首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >FATIGUE EVALUATION PROCEDURES FOR MULTIAXIAL LOADING IN WELDED STRUCTURES USING BATTELLE STRUCTURAL STRESS APPROACH
【24h】

FATIGUE EVALUATION PROCEDURES FOR MULTIAXIAL LOADING IN WELDED STRUCTURES USING BATTELLE STRUCTURAL STRESS APPROACH

机译:利用BATTELLE结构应力法对焊接结构进行多轴载荷的疲劳评估方法。

获取原文

摘要

The Battelle structural stress method is examined for the evaluation of multiaxial loading fatigue behavior in welded structures. Even though the structural stress and its master S-N curve approach have been mainly focused on normal loading dominant (Mode Ⅰ) failure cases, the evaluations on multiaxial loading weld fatigue using structural stress parameters have been relatively recently performed such as using the modified Gough ellipse and the path-dependent maximum range (PDMR) cycle counting procedure. In this article, in order to evaluate the multiaxial fatigue behavior, an effective equivalent structural stress range (EESS) parameter is defined as a von Mises form of combined normal and in-plane shear equivalent structural stress ranges. The newly developed in-plane shear equivalent structural stress range for in-plane shear dominant loading (Mode Ⅲ) is introduced. This in-plane shear equivalent structural stress range parameter has been formulated based on the evaluation of fatigue behavior under in-plane shear loading. Also, the EESS parameter is a function of damage parameter based on the PDMR procedure. In this article, the procedure employing the EESS parameter is evaluated and validated using published weld fatigue data. The multiaxial fatigue date is consolidated within a small scatter band regardless of in-phase, out-of-phase, and non-proportional loading as well as torsional loading. Finally, the design master S-N curve is proposed for multiaxial loading weld fatigue. It is found that the dimensionless bend ratio parameter, I_ι (r_ι)~(1/m_ι) for in-plane shear loading is a much more significant correction than that for normal loading when the ratio of bending structural stress to the total structural stress, r_ι increases. This procedure will be beneficial for fatigue design with preventing over-conservatism.
机译:检验了Battelle结构应力方法,以评估焊接结构中的多轴载荷疲劳行为。尽管结构应力及其主要的SN曲线方法主要集中在正常载荷占主导地位的Ⅰ型失效情况下,但相对较近的近期还是使用结构应力参数对多轴载荷焊接疲劳进行了评估,例如使用改进的Gough椭圆和取决于路径的最大范围(PDMR)周期计数过程。在本文中,为了评估多轴疲劳行为,将有效等效结构应力范围(EESS)参数定义为法向和平面内剪切等效结构应力范围组合的von Mises形式。介绍了新开发的平面内剪切主载荷的平面内剪切当量结构应力范围(模式Ⅲ)。该面内剪切当量结构应力范围参数是根据面内剪切载荷下疲劳行为的评估公式而制定的。同样,EESS参数是基于PDMR程序的损坏参数的函数。在本文中,使用已发布的焊接疲劳数据评估和验证了采用EESS参数的过程。不管同相,异相,非比例载荷以及扭转载荷如何,多轴疲劳数据都会在较小的散射带内合并。最后,提出了设计主S-N曲线,以解决多轴载荷焊缝疲劳问题。已经发现,当弯曲结构应力与总结构应力之比时,平面内剪切载荷的无量纲弯曲比参数I_ι(r_ι)〜(1 /m_ι)比法向载荷的无因次弯曲比参数具有更重要的校正。 r_ι增加。该程序对于防止过度保守的疲劳设计将是有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号