首页> 外文会议>AIAA SciTech forum;ASME wind energy symposium >Fatigue Resistance of Wind Blade Laminates Containing In-Plane Waviness Flaws
【24h】

Fatigue Resistance of Wind Blade Laminates Containing In-Plane Waviness Flaws

机译:包含平面波纹缺陷的风叶层压板的抗疲劳性

获取原文

摘要

Preceding studies have explored the effects of waviness flaws on the static strength of blade laminates, showing severe strength loss for many flaw geometries. Blades containing undetected/unrepaired waviness are subject to spectrum fatigue loading in service, where the flaws may extend sufficiently to produce failure at low service loads. This paper will report the results of fatigue loading of laminates containing flaw geometries selected from the preceding studies. Preliminary results show progression of the waviness flaws to produce failure at relatively low applied fatigue loads, consistent with knockdowns found in static tests. The effects of waviness flaws on statistical aspects of strength and lifetime will be included in the paper. Modeling of the waviness flaws has shown that damage progression under axial loading is primarily driven by local shear stresses in the wave area. Separate research over the past several years has addressed creep/fatigue interactions for similar infused glass/epoxy laminates without artificial flaws, under shear loading. This work is being extended to explore the dominant creep/fatigue mechanisms responsible for damage progression in waviness flaws; in particular, whether criteria which control damage growth are cyclic or cumulative time based. Various loading conditions and flaw geometries will be included in the paper, although preliminary fatigue results are currently only available for a single case.
机译:先前的研究已经探究了波纹缺陷对叶片层压板静态强度的影响,显示出许多缺陷几何形状的严重强度损失。包含未检测到/未修复波纹的叶片在使用中会受到频谱疲劳载荷的影响,在低载荷下,裂纹可能会延伸到足以导致故障的程度。本文将报告包含从先前研究中选取的缺陷几何形状的层压板的疲劳载荷结果。初步结果表明,波纹缺陷的发展会在相对较低的疲劳载荷下产生破坏,这与静态测试中的击倒现象是一致的。波纹缺陷对强度和寿命统计方面的影响将包括在本文中。波纹缺陷的建模表明,轴向载荷作用下的破坏进展主要是由波浪区域中的局部切应力驱动的。在过去的几年中,单独的研究已经解决了在剪切载荷下,类似的无人工缺陷的玻璃/环氧树脂层压板的蠕变/疲劳相互作用。这项工作正在扩展,以探索导致波纹缺陷中损伤发展的主要蠕变/疲劳机制。特别是,控制损害增长的标准是基于循环时间还是基于累积时间。尽管目前仅针对单个情况提供初步疲劳结果,但各种加载条件和缺陷几何形状都将包括在本文中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号