首页> 外文会议>AIAA/CEAS aeroacoustics conference >Experimental and Numerical Study of Fluidic Corrugation Design for Supersonic Jet Noise Reduction
【24h】

Experimental and Numerical Study of Fluidic Corrugation Design for Supersonic Jet Noise Reduction

机译:超音速喷气降噪流体波纹设计的实验与数值研究

获取原文

摘要

The results of this paper summarize an extensive parametric experimental and computational study performed to improve understanding of the on-demand fluidic corrugation noise reduction technology pioneered at Penn State University. This noise reduction technique creates fluidic corrugations via actively-controlled, precise blowing in the divergent section of a converging-diverging nozzle. Researchers at Penn State recognize that a crucial intermediate step in implementing this technology on full-scale aircraft is its extension to industry laboratory scale. This study forms the technology basis for industry-scale experiments going on in parallel to those at Penn State. The injectors producing each corrugation are defined by 4 physical parameters: injection angle, diameter, streamwise position in nozzle, and operating pressure. Each corrugation is additionally defined by the number of injectors generating the corrugation. By altering each of these parameters individually greater insight is gamed on optimal fluidic corrugation design for supersonic jet noise reduction. Initial experiments with 3 injectors/fluidic corrugation showed OASPL reductions comparable to prior experiments using 2 injectors/corrugation. In contrast to 2 injectors/corrugation studies, 3 injectors/corrugation experiments showed greatest noise reduction with the downstream injector operating at lower pressures. RANS simulations provided evidence that the middle injector further decreases the momentum of the core nozzle flow allowing the downstream injector to penetrate farther into the core flow at lower operating pressures. Peak mixing noise was reduced by nearly 4dB OASPL using fluidic corrugations generated by 3 injectors.
机译:本文的结果总结了广泛的参数化实验和计算研究,以增进对宾夕法尼亚州立大学首创的按需流体波纹降噪技术的理解。这种降噪技术通过主动控制的精确吹气在会聚-发散喷嘴的发散部分中产生流体波纹。宾夕法尼亚州立大学的研究人员认识到,在全尺寸飞机上实施此技术的关键中间步骤是将其扩展到工业实验室规模。这项研究为在宾夕法尼亚州进行的工业规模实验提供了技术基础。产生每个波纹的喷射器由4个物理参数定义:喷射角度,直径,喷嘴中的流向位置和工作压力。另外,每个波纹由产生波纹的喷射器的数量限定。通过分别更改这些参数中的每一个,可以在优化流体波纹设计上获得更大的见识,以降低超声速射流的噪声。使用3个注射器/流体波纹的初始实验显示OASPL的减少量与使用2个注射器/波纹的先前实验相当。与2个喷油嘴/瓦楞纸研究相比,3个喷油嘴/瓦楞纸实验显示出最大的降噪效果,下游喷油嘴在较低的压力下运行。 RANS模拟提供了证据,表明中间注入器进一步降低了岩心喷嘴流的动量,从而使下游注入器在较低的工作压力下更深地渗透到岩心流中。使用3个喷油器产生的流体波纹,可将峰值混合噪声降低近4dB OASPL。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号