首页> 外文会议>IEEE International Symposium on Computer Architecture and High Performance Computing >A Scalable Algorithm for Simulating the Structural Plasticity of the Brain
【24h】

A Scalable Algorithm for Simulating the Structural Plasticity of the Brain

机译:用于模拟大脑结构可塑性的可扩展算法

获取原文

摘要

The neural network in the brain is not hard-wired. Even in the mature brain, new connections between neurons are formed and existing ones are deleted, which is called structural plasticity. The dynamics of the connectome is key to understanding how learning, memory, and healing after lesions such as stroke work. However, with current experimental techniques even the creation of an exact static connectivity map, which is required for various brain simulations, is very difficult. One alternative is to use simulation based on network models to predict the evolution of synapses between neurons, based on their specified activity targets. This is particularly useful as experimental measurements of the spiking frequency of neurons are more easily accessible and reliable than biological connectivity data. The Model of Structural Plasticity (MSP) by Butz et al. is an example of this approach. However, to predict which neurons connect to each other, the current MSP model computes probabilities for all pairs of neurons, resulting in a complexity O(n2). To enable large-scale simulations with millions of neurons and beyond, this quadratic term is prohibitive. Inspired by hierarchical methods for solving n-body problems in particle physics, we propose a scalable approximation algorithm for MSP that reduces the complexity to O(n log2 n) without any notable impact on the quality of the results. An MPI-based parallel implementation of our scalable algorithm can simulate neuron counts that exceed the state of the art by two orders of magnitude.
机译:大脑中的神经网络不是硬连线的。即使在成熟的大脑中,神经元之间也会形成新的连接,现有的神经元会被删除,这被称为结构可塑性。连接体的动力学是了解脑卒中等病变后学习,记忆和康复方式的关键。但是,利用当前的实验技术,甚至很难创建各种大脑模拟所需的精确的静态连接图。一种替代方法是使用基于网络模型的模拟,以根据神经元指定的活动目标预测神经元之间突触的演变。这是特别有用的,因为与生物连接性数据相比,对神经元尖峰频率的实验测量更容易获得和可靠。 Butz等人的结构可塑性模型(MSP)。是这种方法的一个例子。但是,要预测哪些神经元相互连接,当前的MSP模型会计算所有神经元对的概率,从而得出复杂度O(n2)。为了能够使用数百万个神经元及更多的神经元进行大规模仿真,这个二次项是禁止的。受用于解决粒子物理学中n体问题的分层方法的启发,我们提出了一种MSP的可扩展近似算法,该算法可将复杂度降低至O(n log2 n),而对结果的质量没有任何显着影响。我们的可扩展算法的基于MPI的并行实现可以模拟比现有技术超出两个数量级的神经元计数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号