首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech Forum >Development of a Three-dimensional Transient Wall Heat Transfer Model of a Rotating Detonation Combustor
【24h】

Development of a Three-dimensional Transient Wall Heat Transfer Model of a Rotating Detonation Combustor

机译:旋转爆轰燃烧室三维瞬态壁传热模型的建立

获取原文

摘要

Numerical simulation of transient heat transfer characteristics of a Rotating Detonation Combustor (RDC) is presented in this paper. A three-dimensional transient conduction model was developed to study the effect of large variation, periodic gas temperature exposed to the inner walls of the rotating detonation combustor outer body. The objective of the simulation is to predict heat flux transients and the interior wall surface temperatures from start up to 10s operation. The time varying, three-dimensional periodic convective boundary condition used for the heat transfer simulation is representative of the detonation wave propagation and other physical characteristics of RDC operating around 3000Hz and is derived from a separate computational fluid dynamics (CFD) simulation. The complex flow distribution downstream of the detonation/fill region results in a wall temperature and fluid dynamics that varies temporally and spatially in all directions. Simulation results were compared with experimental temperature data from literature on the outer body of an uncooled RDC. Combustor wall temperature variation in the axial direction indicates effect of non-uniformity on gas temperature distribution in the combustor for a non-premixed geometry. The simulation provides an estimate of transient heat load and hot spot locations that are critical to design efficient combustor cooling strategies.
机译:本文给出了旋转爆轰燃烧器(RDC)瞬态传热特性的数值模拟。建立了三维瞬态传导模型,以研究大变化,周期性气体温度暴露于旋转爆震燃烧器外壁内壁的影响。模拟的目的是预测从启动到运行10s的热通量瞬变和内壁表面温度。用于传热模拟的时变三维周期性对流边界条件代表了爆震波传播和RDC在3000Hz附近运行的其他物理特性,并且是从单独的计算流体动力学(CFD)模拟得出的。爆轰/填充区域下游的复杂流动分布导致壁温和流体动力学在所有方向上在时间和空间上变化。将模拟结果与未冷却RDC外部的文献中的实验温度数据进行了比较。燃烧器壁温度在轴向方向上的变化指示了对于非预混合几何形状而言,燃烧器中气体温度分布的不均匀性的影响。该仿真提供了瞬态热负荷和热点位置的估计值,这对于设计有效的燃烧器冷却策略至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号