首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference;AIAA SciTech Forum >Classical aeroelastic stability analysis of large composite wind turbine blades
【24h】

Classical aeroelastic stability analysis of large composite wind turbine blades

机译:大型复合材料风力涡轮机叶片的经典气动弹性稳定性分析

获取原文

摘要

To achieve higher energy production bigger wind turbine systems with very long blades are increasingly used in the wind turbine industry. As the length of the wind turbine blades is increased, blades become more flexible in bending and torsion. Increased bending and torsional flexibility of long wind turbine blades may cause torsional divergence and flapwise bending-torsion flutter at high speeds. Therefore, it is important that aeroelastic stability characteristics of the blades be investigated to ensure that wind turbine system is free of any aeroelastic instability. In this study, classical aeroelastic stability approach is applied to a simplified composite blade model. For the purpose of the study, the composite wind turbine blade is modeled as an elastic cantilevered rotating thin-walled composite box beam with the developed Circumferentially Asymmetric Stiffness (CAS) structural model. Circumferentially asymmetric stiffness structural model takes into account a group of non-classical effects such as the transverse shear, the material anisotropy and warping restraint The aerodynamic strip method based on indicial function in unsteady incompressible flow is used to simulate incompressible unsteady aerodynamic effects. Hamilton's principle and the extended Galerldn's method are used to obtain the coupled linear governing system of dynamic equations. Preliminary results show that fiber angle of the CAS structural model affects the aeroelastic instability speed significantly and fiber angle also controls the aeroelastic instability mode.
机译:为了实现更高的能量产生,在风力涡轮机行业中越来越多地使用具有非常长的叶片的更大的风力涡轮机系统。随着风力涡轮机叶片的长度增加,叶片在弯曲和扭转方面变得更加柔性。长风轮机叶片增加的弯曲和扭转柔韧性可能会导致扭转发散和高速时襟翼弯曲-扭转颤振。因此,重要的是研究叶片的气动弹性稳定性特征,以确保风力涡轮机系统没有任何气动弹性不稳定。在这项研究中,经典的气动弹性稳定性方法被应用于简化的复合材料叶片模型。出于研究目的,将复合风力涡轮机叶片建模为具有开发的周向非对称刚度(CAS)结构模型的弹性悬臂旋转薄壁复合箱形梁。周向非对称刚度结构模型考虑了一组非经典效应,例如横向剪力,材料各向异性和翘曲约束。基于非稳态不可压缩流动中的印度函数的气动剥离方法用于模拟不可压缩非稳态空气动力学效应。利用汉密尔顿原理和扩展的加勒尔德方法来获得动力学方程的耦合线性控制系统。初步结果表明,CAS结构模型的纤维角显着影响了气动弹性失稳速度,纤维角也控制了气动弹性失稳模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号