首页> 外文会议>International astronautical congress >RELATIVISTIC REDSHIFT PROBE USING BALLOONS
【24h】

RELATIVISTIC REDSHIFT PROBE USING BALLOONS

机译:使用气球的相对论性转换探针

获取原文

摘要

The continuous improvement of optical atomic clocks offers a unique opportunity to check the redshift predicted by General Relativity using stratospheric balloons. The concept has been under study at CNES and was presented two years ago. Here we report the work done in the mean-time. Carrying an optical clock to an altitude of 40 km and comparing its signal to the one of a sister clock on the ground allows an improvement over current knowledge, and a check on a possible violation if it is observed by the ACES mission in the next three years. The challenges of the experiment arc recalled. The capabilities of a clock accurate at the 10-16 level flying at 400 km: the case of the PHARAO atomic clock within the ACES payload, can only be matched by a 10-17 accuracy clock is flying "only" at 40 km. We decide to set a goal of 5.10-18 for margin. To be consistent with this goal, the altitude of the clock must be known to better than 5 cm as the earth potential typically creates a relative shift of 10-18 per cm. The relation between altitude and gravitational potential must be known accordingly. We report the choice of a GPS receiver, its environment test and the results of an actual flight in a stratospheric balloon launched from Canada during the summer 2015. More flights may follow as we want to fully qualify the device before the actual experiment. Another challenge is the frequency transfer device associated with the experiment. Current advanced microwave device may be up to the task, but would require several hours of avcraring to reach the required frequency resolution. In contrast, coherent laser link promises to do so in much less than an hour and would not limit the clock comparison. We will explore the possibility of using experimental balloon flights to test these devices as well. Finally, optical atomic clocks continue to improve at their own pace in terms of stability (3.10-16 at one second), accuracy (2.10-18) and reliability (reaching days of continuous operations). Several initiatives to make them transportable exist. The first flight may take place in 2019/2020 time frame.
机译:光学原子钟的不断改进为利用平流层气球检查广义相对论预测的红移提供了独特的机会。该概念已在CNES进行研究,并于两年前提出。在这里,我们报告在此期间完成的工作。携带一个光学钟至40 km的高度并将其信号与地面上的姊妹钟之一进行比较,可以改进当前的知识,并检查ACES任务在接下来的三个月中是否观察到了可能的违规情况年。回忆起实验的挑战。精确到10-16的时钟能以400 km的速度飞行:在ACES有效载荷内的PHARAO原子钟的情况下,只能匹配10-17精确的时钟“仅”以40 km的速度飞行。我们决定将利润率目标设定为5.10-18。为了与这个目标保持一致,必须知道时钟的高度要好于5厘米,因为大地电位通常会产生每厘米10-18的相对偏移。因此必须知道高度和重力势之间的关系。我们报告了GPS接收器的选择,其环境测试以及2015年夏季从加拿大发射的平流层气球的实际飞行结果。由于我们想在实际实验之前完全验证设备的质量,因此可能还会有更多飞行。另一个挑战是与实验相关的频率传输设备。当前的先进微波设备也许可以胜任这项任务,但是要花费几个小时才能达到所需的频率分辨率。相反,相干激光链路有望在不到一个小时的时间内完成此操作,并且不会限制时钟比较。我们还将探讨使用实验性气球飞行来测试这些设备的可能性。最终,光学原子钟在稳定性(在一秒为3.10-16),准确性(2.10-18)和可靠性(连续工作达数天)方面不断提高。存在使它们可运输的几种举措。首次飞行可能在2019/2020年的时间范围内进行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号