首页> 外文会议> >DESIGN AND INTEGRATION OF MODULAR DEEP SPACE HABITAT USING A ROBUST OPTIMIZATION FRAMEWORK
【24h】

DESIGN AND INTEGRATION OF MODULAR DEEP SPACE HABITAT USING A ROBUST OPTIMIZATION FRAMEWORK

机译:基于鲁棒优化框架的模块式深空人居设计与集成

获取原文

摘要

The aim of this study is to provide a Systems of Systems framework that can guide the design and production of a multi-sourced, modular, deep space crew vehicle. This vehicle could be used to provide crew habitat for the exploration of cislunar space, near earth asteroids and Mars. The goal is to allow an entity, such as NASA, to leverage assets such as commercial and international partners by using near term or pre-existing hardware in a modular fashion. There exist today countless different pieces of space hardware, modules and vehicles that differ in their development level from preliminary designs to flight tested hardware. The ability to add or subtract modules at different points in a timeline could fall in line with the stepping stones approach NASA wishes to take. A portfolio optimization technique is used to explore combinations of pre-existing or near term hardware that work cohesively to meet overarching capability objectives. This approach also allows for the performance uncertainty of development stage hardware. Connectivity constraints of hardware are addressed through the use of network theory. This approach offers benefits such as robust design and the ability to spread a space budget across multiple sources of funding. The evolutionary capability of such an approach allows for early vehicle and hardware testing similar to the progression of the International Space Station. Disadvantages include the lack of complete control over portions of the every system and the added complexity in combining hardware. The aim of this study is to provide a useful metric when comparing to a single source monolithic space vehicle. Example scenarios explored at the end of this paper include the application of this method to exploration class missions including near Earth architectures, Mars architectures and an Earth-Mars cycler.
机译:这项研究的目的是提供一个系统系统框架,该框架可以指导多源,模块化,深空载人飞行器的设计和生产。该车可用于为乘员提供栖息地,用于探索地球小行星和火星附近的月球空间。目标是允许诸如NASA之类的实体通过以模块化方式使用短期或预先存在的硬件来利用诸如商业和国际合作伙伴之类的资产。如今,存在着无数不同的空间硬件,模块和运载工具,其发展水平从初步设计到经过飞行测试的硬件都不同。在时间轴上不同点添加或减去模块的能力可能与NASA希望采用的垫脚石一致。资产组合优化技术用于探索可以协同工作以满足总体能力目标的现有或近期硬件的组合。这种方法还考虑到了开发阶段硬件的性能不确定性。硬件的连接限制是通过使用网络理论解决的。这种方法提供了诸如强大的设计以及将空间预算分配到多个资金来源的能力之类的好处。这种方法的演进能力允许与国际空间站的发展相似的早期车辆和硬件测试。缺点包括无法完全控制每个系统的各个部分,并且在组合硬件方面增加了复杂性。这项研究的目的是在与单源整体式航天器进行比较时提供一种有用的度量。本文末尾探讨的示例场景包括将该方法应用于探索类任务,包括近地建筑,火星建筑和地球-火星循环仪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号