首页> 外文会议>AIAA aviation technology, integration and operations conference >Designing an UAV Propulsion System for Dedicated Acceleration and Deceleration Requirements
【24h】

Designing an UAV Propulsion System for Dedicated Acceleration and Deceleration Requirements

机译:设计满足专用加减速要求的无人机推进系统

获取原文

摘要

The FLEXOP Project aims to develop new methods and tools to assist the design of aircraft with highly flexible wing structures. Flight and especially flutter testing with an unmanned flying demonstrator shall help to validate and verify these approaches. Though, regulations for the operation of UAV in German airspace introduce additional challenges to the aircraft design: Since maneuvers have to be performed well below the airspeed of flutter-onset, the delimitation of the flight testing to visual line of sight increases significantly the demands on acceleration and deceleration of the vehicle. Following, the requirements for the propulsion and brake system of this demonstrator differ noticeably from classic aircraft design problems. Additionally, for budget and schedule reasons, only off-the-shelf solutions should be implemented for the propulsion system. In the following, an alternative evaluation and optimization approach was implemented by a variation of propulsion and deceleration principles, incorporating a dynamic simulation of the test flight mission. The optimization focused on sufficient acceleration performance while minimizing total system costs, as well as system mass (including mission fuel weight). Evaluating the results, a single micro turbojet engine in combination with fuselage mounted airbrakes is proven to be the lightest, low-cost solution, despite the characteristic slow throttle response and low fuel efficiency. Subsequently, propulsion system components are designed in detail, integrated and tested. The results are used to update the mission simulation model to verify and validate the propulsion and deceleration system selection.
机译:FLEXOP项目旨在开发新的方法和工具,以协助设计具有高度柔性机翼结构的飞机。使用无人飞行演示器进行的飞行,尤其是扑动测试,将有助于验证和验证这些方法。但是,针对德国空域中无人机的操作规定给飞机设计带来了其他挑战:由于必须在低于扑翼起伏的空速下执行机动,因此将飞行测试的范围限制为视线范围会大大增加对飞行器的要求。车辆的加速和减速。其次,该演示器对推进和制动系统的要求与经典飞机设计问题明显不同。此外,出于预算和进度原因,仅应为推进系统实施现成的解决方案。在下文中,通过改变推进和减速原理,并结合了试飞任务的动态模拟,实现了一种替代的评估和优化方法。优化的重点在于充分的加速性能,同时最大程度地降低系统总成本以及系统质量(包括任务燃料​​重量)。评估结果时,尽管具有节气门响应慢和燃油效率低的特点,但单个微型涡轮喷气发动机与机身安装的空气制动器相结合被证明是最轻便的低成本解决方案。随后,详细设计,集成和测试了推进系统的各个组成部分。结果用于更新任务仿真模型,以验证和确认推进和减速系统的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号