首页> 外文会议>AIAA aviation technology, integration and operations conference >Multi-Element Blade Design for MW-Scale Wind Turbines
【24h】

Multi-Element Blade Design for MW-Scale Wind Turbines

机译:兆瓦级风力发电机的多元素叶片设计

获取原文

摘要

Current Megawatt scale wind turbines suffer from performance losses due to the requirement of thick airfoils at the inboard section to withstand the structural, aerodynamic and gravitational loads resulting from turbine operation. Thicker root sections lead to increased overall weight of the wind turbine blades resulting in additional transportation and manufacturing expenses. This increase in cost limits the overall achievable size of modern wind turbines for economically feasible operation. A computational study was conducted to investigate the effect of replacing the thick airfoil sections near the blade root with multi-element configurations to develop turbine blades with lighter root sections. Two multi-element configurations developed by the Applied Aerodynamics Group at University of Illinois at Urbana-Champaign (UIUC), the MFS and MFFS multi-element airfoils, were studied and compared against the root airfoils for a baseline 5MW wind turbine blade for the same operational Reynolds number. The NREL 5 MW turbine was selected as the reference model due to abundance of available performance and design data. Inverse design methods were used to design a blade with multi-element segments and the performance of the designed rotor was compared against the NREL 5MW wind turbine operating under the same wind conditions. Based on the design parameters obtained, a 3D model of the wind turbine blade was developed to demonstrate the transition of multi-element root sections into the single element tip section. Results demonstrate the capability for a turbine incorporating multi-element blades to produce higher C_(p_max)) than the baseline rotor for the same operational conditions. Hence for the same rated power, the multi-element blade demonstrated higher efficiency. In addition to improved performance, the designed blade achieved the rated power with a smaller blade radius, leading to increased material and cost savings.
机译:当前的兆瓦级风力涡轮机由于在内侧部分需要厚翼型件以承受由涡轮机运行引起的结构,空气动力学和重力载荷而遭受性能损失。较厚的根部截面导致风力涡轮机叶片的总重量增加,从而导致额外的运输和制造费用。成本的增加限制了用于经济上可行的操作的现代风力涡轮机的总体可达到的尺寸。进行了一项计算研究,以研究用多元素配置替换叶片根部附近的较厚翼型部分以开发出具有较轻根部部分的涡轮机叶片的效果。由伊利诺伊大学厄本那-香槟分校(UIUC)的应用空气动力学小组开发的两种多元素配置,即MFS和MFFS多元素翼型,已针对相同的基线5MW风力涡轮机叶片进行了研究,并与根翼型进行了比较。雷诺数。由于大量的可用性能和设计数据,NREL 5 MW涡轮机被选作参考模型。使用逆向设计方法来设计具有多元素段的叶片,并将设计的转子的性能与在相同风况下运行的NREL 5MW风力发电机进行了比较。基于获得的设计参数,开发了风力涡轮机叶片的3D模型,以演示多元素根部到单元素叶尖的过渡。结果表明,在相同的运行条件下,装有多元件叶片的涡轮机能够产生比基准转子更高的C_(p_max))。因此,对于相同的额定功率,多叶片叶片显示出更高的效率。除了提高性能外,设计的刀片还以较小的刀片半径获得了额定功率,从而增加了材料并节省了成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号