首页> 外文会议>AIAA Aerospace Sciences Meeting;AIAA SciTech Forum >Computation of Rarefaction Effects on a Blunt Body in Hypersonic Flow
【24h】

Computation of Rarefaction Effects on a Blunt Body in Hypersonic Flow

机译:高超声速流动对钝体的增强效应的计算

获取原文

摘要

High-speed vehicles such as next generation launch vehicles or reusable spacecraft experience different flow regimes during flight due to change in atmospheric density. At high altitude, due to low density the flow becomes rarefied and the rarefaction effects cannot be accurately modeled by the Navier-Stokes equations with no-slip boundary conditions. In low density flow, for predicting the small rarefaction effects, Maxwell suggested the use of slip boundary conditions with Navier-Stokes equations. In this paper, a UDF (User Defined Function) which employs the velocity slip and temperature jump boundary conditions at the wall is applied to the commercial flow solver ANSYS FLUENT with the compressible Reynolds Averaged Navier-Stokes (RANS) equations in conjunction with the Shear-Stress-Transport (SST) κ-ω turbulence model to simulate the flow around a blunt body in hypersonic flow. The results of both no-slip condition and slip boundary conditions for flow past an axisymmetric body with Knudsen number Kn = 0.0003354, 0.00838, 0.0167, 0.0418, and O.lare computed and the effect of rarefaction on heat transfer and drag is analyzed and discussed. In addition, a multi-objective genetic algorithm is used to optimize the shape of the blunt body for minimizing both the drag and heat flux. A Pareto optimal front is obtained for different optimization weights of drag vs. heat transfer for Kn = 0.0167.
机译:由于大气密度的变化,下一代运载火箭或可重复使用的航天器等高速飞行器在飞行过程中会经历不同的流动状态。在高海拔地区,由于密度低,流动变得稀疏,并且稀疏效应无法通过无滑移边界条件的Navier-Stokes方程精确建模。在低密度流动中,为了预测较小的稀疏效应,麦克斯韦建议将滑动边界条件与Navier-Stokes方程一起使用。在本文中,将利用壁上的速度滑移和温度跃变边界条件的UDF(用户定义函数)应用于带有可压缩雷诺平均Navier-Stokes(RANS)方程和Shear的商用流量求解器ANSYS FLUENT -Stress-Transport(SST)κ-ω湍流模型,用于模拟高超声速流动中钝体周围的流动。计算了流经轴对称体的努氏数Kn = 0.0003354、0.00838、0.0167、0.0418和O.lare的无滑移条件和滑移边界条件的结果,并分析了稀薄化对传热和阻力的影响并进行了讨论。另外,多目标遗传算法用于优化钝体的形状,以最小化阻力和热通量。对于Kn = 0.0167,针对阻力与传热的不同优化权重,获得了帕累托最优前沿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号