首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Liquid Layer Combustion Visualization of Paraffin-based Hybrid Rocket Fuels
【24h】

Liquid Layer Combustion Visualization of Paraffin-based Hybrid Rocket Fuels

机译:石蜡基混合火箭燃料的液层燃烧可视化

获取原文

摘要

The adoption of hybrid propulsion systems has been hampered in the past by the low regression rate associated with classical polymeric fuels, which required a complex, multi-port fuel grain geometry. The discovery of liquefying hybrid rocket fuels (e.g. paraffin) in recent years has generated a renewed interest in hybrid propulsion. This kind of fuels enables higher regression rates due to the presence of an unstable melt layer on the fuel surface during combustion, which causes entrainment of liquid droplets into the oxidizer gas flow. In order to have a sufficient droplet entrainment, the liquid layer must be characterized by low viscosity and surface tension. The higher regression rate enables a simple, single-port fuel grain geometry, which can be used in hybrid propulsion systems for many space applications. However, the mechanism responsible for the droplets entrainment still needs to be investigated and fully understood. Therefore, the liquid layer combustion mechanism of paraffin-based hybrid rocket fuels in combination with gaseous oxygen (GOX) has been analysed with different optical techniques in the framework of this research. A 2D slab burner with windows on two sides has been used for performing combustion tests at atmospheric conditions. High-speed videos have been recorded and analysed in detail with an automated video evaluation routine. Two different decomposition techniques (Proper Orthogonal Decomposition and Independent Component Analysis) were applied to the scalar field of the flame luminosity. The fuel composition and configuration and the oxidizer mass flow have been varied in order to study the influence of these parameters on the liquid layer instability process. In this paper the influence of the oxidizer mass flow and fuel viscosity is presented and discussed. The results show that the combustion is dominated by a periodic, wave-like structure and that the most excited frequencies and wavelengths characterizing the liquid melt layer depend on the oxidizer mass flow and on the liquid layer viscosity. Moreover, for very low mass flows, no distinct wavelength peaks are detected with both decomposition methods. This is important to better understand the onset of the entrainment process, which is connected to the amplification of longitudinal unstable waves caused by the high velocity gas flow over the fuel surface
机译:过去,混合动力推进系统的采用由于与传统聚合物燃料相关的低回归速率而受到阻碍,而传统聚合物燃料要求复杂的多端口燃料颗粒几何形状。近年来,液化混合火箭燃料(例如石蜡)的发现引起了人们对混合推进的新兴趣。由于在燃烧期间燃料表面上存在不稳定的熔体层,因此这种燃料能够实现更高的回归率,这会导致液滴夹带进入氧化剂气流。为了具有足够的液滴夹带,液体层必须以低粘度和表面张力为特征。较高的回归率可实现简单的单端口燃料颗粒几何形状,可将其用于混合动力系统中的许多空间应用。然而,仍然需要研究和充分理解引起液滴夹带的机理。因此,在本研究的框架内,已使用不同的光学技术分析了石蜡基混合火箭燃料与气态氧(GOX)结合的液层燃烧机理。两侧带有窗口的2D平板燃烧器已用于在大气条件下进行燃烧测试。高速视频已通过自动视频评估例程进行了详细记录和分析。两种不同的分解技术(正确的正交分解和独立分量分析)应用于火焰光度的标量场。为了研究这些参数对液层不稳定性过程的影响,已经改变了燃料的组成和构型以及氧化剂的质量流量。本文提出并讨论了氧化剂质量流量和燃料粘度的影响。结果表明,燃烧以周期性的波状结构为主,并且表征液体熔体层的最受激频率和波长取决于氧化剂的质量流量和液体层的粘度。此外,对于非常低的质量流量,两种分解方法均未检测到明显的波长峰值。这对于更好地理解夹带过程的开始很重要,该过程与燃料表面上高速气流所引起的纵向不稳定波的放大有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号