首页> 外文会议>ASME international conference on nanochannels, microchannels and minichannels >Modeling of Flow Distribution in Proton Exchange Membrane Fuel Cell
【24h】

Modeling of Flow Distribution in Proton Exchange Membrane Fuel Cell

机译:质子交换膜燃料电池流动分布的建模

获取原文

摘要

Analysis and design of flow fields for proton exchange membrane fuel cell (PEMFC) require coupled solution of the flow fields, gas transport and electrochemical reaction kinetics in the anode and the cathode. Computational cost prohibits the widespread use of three-dimensional models of the anode and cathode flow fields, gas diffusion layers (GDL), catalyst layers (CL) and the membrane for fluid flow and mass transport. On the other-hand, detailed cross-sectional two-dimensional models cannot resolve the effects of the anode and cathode flow field designs. Here, a two-dimensional in-plane model is developed for the resolution of the effects of anode and cathode flow channels and GDLs, catalyst layers are treated as thin-layers of reaction interfaces and the membrane is considered as a thin-layer that resist the transfer of species and the ionic current. Brinkman equations are used to model the in-plane flow distribution in the channels and the GDLs to account for the momentum transport in the channels and the porous GDLs. Fick's law equations are used to model transport of gas species in the channels and GDLs by advection and diffusion mechanisms, and electrochemical reactions in the CL interfaces are modeled by Butler-Volmer equations. Complete features of the flow in the channels and inlet and outlet manifolds are included in the model using resistance relationships in the through-plane direction. The model is applied to a small cell having an active area of 1.3 cm~2 and consisting of 8 parallel channels in the anode and a double serpentine in the cathode. Effects of the anode and cathode stoichiometric ratios on the cell performance and hydrogen utilization are investigated. Results demonstrate that for a sufficiently high cathode stoichiometric ratio enough, anode stoichiometric ratio can be lowered to unity to obtain very high hydrogen utilization and output power.
机译:质子交换膜燃料电池(PEMFC)的流场的分析和设计需要阳极和阴极中流场,气体传输和电化学反应动力学的耦合解决方案。计算成本阻止了阳极和阴极流场,气体扩散层(GDL),催化剂层(CL)和用于流体流动和传质的膜的三维模型的广泛使用。另一方面,详细的截面二维模型不能解决阳极和阴极流场设计的影响。在这里,建立了二维平面模型以解决阳极和阴极流动通道和GDL的影响,催化剂层被视为反应界面的薄层​​,而膜被认为是具有抵抗力的薄层。物质的转移和离子电流。 Brinkman方程用于对通道和GDL中的面内流量分布进行建模,以说明通道和多孔GDL中的动量传输。 Fick定律方程用于通过平流和扩散机制模拟通道和GDL中气体种类的传输,CL界面中的电化学反应通过Butler-Volmer方程建模。使用贯穿平面方向上的阻力关系,模型中包括通道以及入口和出口歧管中流动的完整特征。该模型应用于一个具有1.3 cm〜2的有效面积的小电池,该小电池由阳极中的8个平行通道和阴极中的双蛇形组成。研究了阳极和阴极化学计量比对电池性能和氢气利用率的影响。结果表明,对于足够高的阴极化学计量比,可以将阳极化学计量比降低至统一以获得非常高的氢利用率和输出功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号