首页> 外文会议>International conference on principles and practice of constraint programming >MLIC: A MaxSAT-Based Framework for Learning Interpretable Classification Rules
【24h】

MLIC: A MaxSAT-Based Framework for Learning Interpretable Classification Rules

机译:MLIC:用于学习可解释分类规则的基于MaxSAT的框架

获取原文

摘要

The wide adoption of machine learning approaches in the industry, government, medicine and science has renewed the interest in interpretable machine learning: many decisions are too important to be delegated to black-box techniques such as deep neural networks or kernel SVMs. Historically, problems of learning interpretable classifiers, including classification rules or decision trees, have been approached by greedy heuristic methods as essentially all the exact optimization formulations are NP-hard. Our primary contribution is a MaxSAT-based framework, called MLIC, which allows principled search for interpretable classification rules expressible in propositional logic. Our approach benefits from the revolutionary advances in the constraint satisfaction community to solve large-scale instances of such problems. In experimental evaluations over a collection of benchmarks arising from practical scenarios we demonstrate its effectiveness: we show that the formulation can solve large classification problems with tens or hundreds of thousands of examples and thousands of features, and to provide a tunable balance of accuracy vs. interpretability. Furthermore, we show that in many problems interpretability can be obtained at only a minor cost in accuracy. The primary objective of the paper is to show that recent advances in the MaxSAT literature make it realistic to find optimal (or very high quality near-optimal) solutions to large-scale classification problems. We also hope to encourage researchers in both interpretable classification and in the constraint programming community to take it further and develop richer formulations, and bespoke solvers attuned to the problem of interpretable ML.
机译:机器学习方法在行业,政府,医学和科学界的广泛采用,重新激发了人们对可解释机器学习的兴趣:许多决策太重要了,不能委托给黑盒技术(例如深度神经网络或内核SVM)使用。从历史上看,贪婪的启发式方法已经解决了学习可解释的分类器(包括分类规则或决策树)的问题,因为基本上所有精确的优化公式都是NP-hard的。我们的主要贡献是基于MaxSAT的框架(称为MLIC),该框架允许对命题逻辑中可表达的可解释分类规则进行有原则的搜索。我们的方法得益于约束满足社区的革命性进步,可以解决此类问题的大规模实例。在对来自实际场景的一组基准进行的实验评估中,我们证明了其有效性:我们证明了该公式可以解决具有成千上万个示例和数千个功能的大型分类问题,并在精度与精度之间提供可调节的平衡。可解释性。此外,我们证明,在许多问题中,仅需很小的成本就能获得可解释性。本文的主要目的是表明MaxSAT文献中的最新进展使找到针对大规模分类问题的最佳(或非常高质量的近最佳)解决方案变得现实。我们还希望鼓励可解释分类和约束编程社区中的研究人员进一步研究并开发更丰富的公式,并定制解决器以解决可解释ML问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号