首页> 外文会议>Clearwater clean coal conference;International technical conference on clean energy >NiCe@SiO_2 Yolk-Shell Nanotube Morphology and Its Catalytic Effects on Activity and Stability in Tri-Reforming of Methane
【24h】

NiCe@SiO_2 Yolk-Shell Nanotube Morphology and Its Catalytic Effects on Activity and Stability in Tri-Reforming of Methane

机译:NiCe @ SiO_2卵壳纳米管的形貌及其对甲烷三重转化活性和稳定性的催化作用

获取原文

摘要

Climate change has been a major environmental issue for the past couple of years, and the main components which accelerate the global warming are carbon dioxide (CO_2) and methane (CH_4). Researchers have been investigating many ways to convert hazardous chemicals to useful forms to minimize greenhouse gas emissions along with acquiring new energy sources. Tri-reforming of methane can be a viable option to utilize CO_2 and CH_4, and produce syngas (hydrogen and carbon monoxide) directly from a power plant. The stack gas directly enters the reactor along with a natural gas, and the catalytically produced syngas can further be used to other reactions, such as methanol synthesis and Fischer-Tropsch process. A nickel (Ni)-based catalyst is widely developed for reforming reactions because it exhibits comparable high activity to noble metals with low cost. Ni, however, will sinter at high reaction temperatures, and carbon can be deposited on the active site of the catalyst, which leads to rapid deactivation. Scientists have controlled the morphology of the catalyst to prevent those problems. Core (yolk)-shell structure, which are active metal nanoparticles surrounded by a porous support material, have been developed. Encapsulated metal particles present high resistance for carbon formation and activity due to its confinement effect. In this work, we synthesized NiCe@SiO_2 yolk-shell nanotube structures as catalyst by a reverse microemulsion method. The addition of another metal, cerium to form a bimetallic catalyst can improve the activity and stability because CeO_2 has high oxygen vacancies with reversible valence redox properties. Different morphologies of the yolk-shell structure and their catalytic performance have been studied under various tri-reforming conditions and have been compared with conventional wet impregnated catalyst. The narrower size of tube with larger particle showed great performance at low CH_4 to oxidizer ratio, whereas the catalyst containing smaller particles within wider width of tube presented higher activity and resistance for carbon deposition at high CH_4 to oxidizer ratio.
机译:在过去的几年中,气候变化一直是一个主要的环境问题,导致全球变暖的主要因素是二氧化碳(CO_2)和甲烷(CH_4)。研究人员一直在研究多种方法将有害化学物质转化为有用的形式,以最大程度地减少温室气体的排放,同时获取新的能源。甲烷的三重整可能是利用CO_2和CH_4并直接从发电厂生产合成气(氢气和一氧化碳)的可行选择。烟道气与天然气一起直接进入反应器,催化生成的合成气可进一步用于其他反应,例如甲醇合成和费托工艺。镍(Ni)基催化剂被广泛开发用于重整反应,因为它以低成本显示了与贵金属相当的高活性。但是,Ni将在高反应温度下烧结,并且碳会沉积在催化剂的活性位点上,从而导致快速失活。科学家已经控制了催化剂的形态,以防止出现这些问题。已经开发出核(卵黄)-壳结构,其是被多孔载体材料包围的活性金属纳米颗粒。包封的金属颗粒由于其限制作用而呈现出高的碳形成和活性抗性。在这项工作中,我们通过反向微乳液法合成了NiCe @ SiO_2卵黄壳纳米管结构作为催化剂。加入另一种金属铈形成双金属催化剂可提高活性和稳定性,因为CeO_2具有高的氧空位且具有可逆的价态氧化还原性质。在各种三重整条件下研究了卵黄壳结构的不同形态及其催化性能,并将其与常规湿法浸渍催化剂进行了比较。具有较小颗粒的管的较窄尺寸在低CH_4与氧化剂的比例下表现出出色的性能,而在较宽的管宽内含有较小颗粒的催化剂在较高CH_4与氧化剂的比例下具有较高的活性和抗碳沉积性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号