首页> 外文会议>Clearwater clean coal conference;International technical conference on clean energy >Chemical Looping Coal Gasification economic assessment for IGCC applications and sub-pilot scale demonstrations
【24h】

Chemical Looping Coal Gasification economic assessment for IGCC applications and sub-pilot scale demonstrations

机译:IGCC应用的化学循环煤气化经济评估和小规模示范

获取原文

摘要

Coal is an essential energy source. An integrated gasification combined cycle (IGCC) provides a conversion pathway from coal to electricity with higher energy efficiency and easier pollutant control compared to pulverized coal (PC) boilers. The capital and operating costs of the IGCC process, however, are high due to the expensive gasification equipment and energy-intensive air separation unit (ASU). To attempt to address these disadvantages of the conventional IGCC processes, The Ohio State University (OSU) has developed a novel chemical looping-based process, which utilizes an iron-based metal oxide oxygen carrier (OC) to indirectly supply oxygen to carbonaceous fuel. The novel chemical looping-based IGCC process produces high purity syngas while eliminating the need for a gasifier or ASU. An attractive feature of this chemical looping IGCC unit is that the unit could potentially meet the New Source Performance Standards that limit CO_2 emissions from coal based electricity generating units. Three different process configurations have been designed for the conversion process including a two-reactor system utilizing the efficiency of the chemical looping IGCC to comply with the CO_2 emission limit, a two-reactor system with 90% CO_2 capture and a three-reactor system with 90% CO_2 capture. Aspen Plus is utilized to study the thermodynamic properties and simulate the process system of the chemical looping IGCC process. Operating conditions including temperature, pressure, OC flow rate and steam injection rate are varied in the Aspen models to investigate their influence on syngas yield and composition. Along with the thermodynamic calculations, experiments have been conducted in a bench scale moving bed reactor to verify the thermodynamic calculation results. The results obtained from the bench-scale experiments showed a close match between experiments and simulation. A 15 kWth sub-pilot unit was constructed for larger scale experimental verification of the thermodynamic simulations. The experimental results are scaled and integrated into a techno-economic analysis of the chemical looping IGCC process, conducted in collaboration with WorleyParsons. This presentation will initially focus on the theoretical thermodynamic rationale and validating experimental results for using a co-current moving bed reducer and an optimized oxygen carrier composite. The comprehensive techno-economic analysis performed in collaboration with WorleyParsons and current research for de-risking technology gaps for a successful commercial demonstration will be discussed.
机译:煤炭是必不可少的能源。与粉煤(PC)锅炉相比,集成的气化联合循环(IGCC)提供了从煤到电的转换路径,具有更高的能源效率和更容易的污染物控制。但是,由于昂贵的气化设备和高能耗的空气分离装置(ASU),IGCC工艺的资金和运营成本很高。为了尝试解决常规IGCC工艺的这些缺点,俄亥俄州立大学(OSU)开发了一种新型的基于化学循环的工艺,该工艺利用铁基金属氧化物氧气载体(OC)间接向碳质燃料供应氧气。基于化学回路的新型IGCC工艺可产生高纯度合成气,同时无需气化炉或ASU。这种化学循环IGCC装置的一个吸引人的特点是,该装置可能符合新的源性能标准,该标准限制了煤基发电装置的CO_2排放。已为转化过程设计了三种不同的工艺配置,包括利用化学回路IGCC的效率满足CO_2排放限制的两反应器系统,具有90%CO_2捕集率的两反应器系统和三反应器系统。 90%的CO_2捕获。 Aspen Plus用于研究热力学性质并模拟化学循环IGCC工艺的工艺系统。在Aspen模型中,包括温度,压力,OC流量和蒸汽注入速率在内的各种操作条件均会发生变化,以研究它们对合成气收率和组成的影响。与热力学计算一起,在台式规模的移动床反应器中进行了实验,以验证热力学计算结果。从基准规模实验获得的结果表明,实验与仿真之间有着紧密的匹配。建造了一个15千瓦时的子先导单元,用于热力学模拟的大规模实验验证。与WorleyParsons合作,对实验结果进行了缩放,并整合到了化学循环IGCC工艺的技术经济分析中。本演示文稿将首先关注理论热力学原理,并验证使用并流移动床减压器和优化的氧载体复合物的实验结果。我们将与WorleyParsons合作进行全面的技术经济分析,并探讨有效减少技术差距以成功进行商业演示的最新研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号