首页> 外文会议>ASME/JSME/KSME Joint Fluids Engineering Conference >AN EXPLICIT MODELING APPROACH FOR SIMULATING FLUID-STRUCTURE INTERACTION PROBLEMS WITH IMMERSED-BOUNDARY FINITE-VOLUME METHOD
【24h】

AN EXPLICIT MODELING APPROACH FOR SIMULATING FLUID-STRUCTURE INTERACTION PROBLEMS WITH IMMERSED-BOUNDARY FINITE-VOLUME METHOD

机译:用浸入边界有限体积法模拟流固耦合问题的显式建模方法

获取原文

摘要

Fluid-structure interaction (FSI) is an important fundamental problem with wide scientific and engineering applications. The immersed boundary method has proved to be an effective way to model the interaction between a moving solid and its surrounding fluid. In this study, a novel modeling approach based on the coupled immersed-boundary and finite-volume method is proposed to simulate fluid-structure interaction problems. With this approach, the whole computational domain is treated as fluid and discretized by only one set of Eulerian grids. The computational domain is divided into solid parts and fluid parts. A goal velocity is locally determined in each cell inside the solid part. At the same time, the hydrodynamic force exerted on the solid structure is calculated by integrating along the faces between the solid cells and fluid cells. In this way, the interaction between the solid and fluid is solved explicitly and the costly information transfer between Lagranian grids and Eulerian grids is avoided. The interface is sharply restricted into one single grid width throughout the iterations. The proposed modeling approach is validated by conducting several classic numerical experiments, including flow past static and freely rotatable square cylinders, and sedimentation of an ellipsoid in finite space. Throughout the three numerical experiments, satisfying agreements with literatures have been obtained, which demonstrate that the proposed modeling approach is accurate and robust for simulating FSI problems.
机译:流固耦合(FSI)是广泛的科学和工程应用中的一个重要的基本问题。浸入边界方法已被证明是模拟运动固体与其周围流体之间相互作用的有效方法。在这项研究中,提出了一种基于沉浸边界和有限体积耦合方法的新型建模方法,以模拟流固耦合问题。通过这种方法,整个计算域被视为流体,并且仅通过一组欧拉网格进行离散化。计算域分为实体部分和流体部分。在实体零件内部的每个像元中局部确定目标速度。同时,通过沿着固体小室和流体小室之间的面进行积分来计算施加在固体结构上的流体动力。这样,可以明确解决固体与流体之间的相互作用,并避免了拉格朗日网格和欧拉网格之间昂贵的信息传递。在整个迭代过程中,将界面严格限制为一个单一的网格宽度。通过进行一些经典的数值实验,包括通过静态和可自由旋转的方形圆柱体的流,以及在有限空间中椭球的沉降,对提出的建模方法进行了验证。在这三个数值实验中,与文献取得了令人满意的一致性,这表明所提出的建模方法对于模拟FSI问题是准确且健壮的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号