首页> 外文会议>ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2007 >A NEW NANOMECHANICAL CANTILEVER SENSING PARADIGM USING PIEZOELECTRIC BORON NITRIDE NANOTUBE-BASED ACTUATION
【24h】

A NEW NANOMECHANICAL CANTILEVER SENSING PARADIGM USING PIEZOELECTRIC BORON NITRIDE NANOTUBE-BASED ACTUATION

机译:基于压电氮化硼纳米管的驱动新的纳米机械悬臂传感范例

获取原文

摘要

Nanomechanical Cantilever Sensors (NMCS) have recently attracted a widespread attention for use in different nano- and micro-size applications such as studying the nanoscale surface topography by scanning probe microscopy and atomic force microscopy (AFM). In newer AFM systems, a sharp probe is placed at the tip of the microcantilever and a piezoelectric patch actuator deposited on the cantilever surface produces the movements of the probe above the examined surface. Similar system can be also utilized for mass sensing purposes by adding an unknown mass to the tip and measuring the beam deflection and the amount of shift in the resonance frequency that is caused by the addition of the tip mass. This sensing paradigm finds many applications in medical and biological fields such as DNA strand and bacteria weight measurement. However, one of the major issues in all piezoelectrically-actuated microcantilevers is the low actuation energy of the piezoelectric patch. Most of the current and widely used piezoelectric materials possess low mechanical characteristics such as low Young's modulus of elasticity, low yield strength and most importantly incompatibility with most biological species and environment. It has been shown that both carbon and boron nitride nanotubes (CNT and BNNT) possess outstanding mechanical, chemical and electrical properties with acceptable piezoelectricity which make them suitable for microcantilever actuation applications. In this paper, a multi-physics multi-scale model is proposed in which the actuation of microcantilevers is produced by two sets of nanotube layers. Through extensive simulations, BNNTs were chosen to be used as the actuators because of their enhanced piezoelectric characteristics compared to CNTs. The modeling framework proposed here is used to investigate the effects of deposited tip mass with different weights on frequency response and resonance frequency of the microcantilever beam. These microbeams are made of aluminum or titanium materials and the results are compared with each other.
机译:纳米机械悬臂梁传感器(NMCS)最近在不同的纳米和微米尺寸应用中受到广泛关注,例如通过扫描探针显微镜和原子力显微镜(AFM)研究纳米级表面形貌。在较新的AFM系统中,将尖锐的探针放置在微悬臂梁的尖端,而沉积在悬臂梁表面上的压电膜片致动器会产生探针在被检查表面上方的移动。通过将未知质量添加到尖端并测量光束偏转和由尖端质量的增加引起的共振频率的偏移量,类似的系统也可以用于质量感测目的。这种感测范式在医学和生物学领域(例如DNA链和细菌重量测量)中找到了许多应用。然而,所有压电致动微悬臂梁中的主要问题之一是压电贴片的低致动能量。当前和广泛使用的大多数压电材料具有低机械特性,例如低杨氏弹性模量,低屈服强度,最重要的是与大多数生物物种和环境不兼容。已经表明,碳纳米管和氮化硼纳米管(CNT和BNNT)都具有出色的机械,化学和电性能,并具有可接受的压电性,这使其适用于微悬臂致动应用。本文提出了一种多物理场多尺度模型,其中由两组纳米管层产生微悬臂梁的致动。通过广泛的模拟,由于BNNT与CNT相比具有增强的压电特性,因此被选作致动器。本文提出的建模框架用于研究不同重量的沉积尖端质量对微悬臂梁的频率响应和共振频率的影响。这些微束由铝或钛材料制成,并将结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号