首页> 外文会议>International conference on advances in nuclear power plants;ICAPP 2008 >A Contingency Safe, Responsible, Economic, Increased Capacity Spent Nuclear Fuel (SNF) Advance Fuel Cycle
【24h】

A Contingency Safe, Responsible, Economic, Increased Capacity Spent Nuclear Fuel (SNF) Advance Fuel Cycle

机译:应急安全,负责任,经济,增加容量的乏核燃料(SNF)提前燃料循环

获取原文

摘要

The purpose of this paper is to have an Advanced Light Water (LWR) fuel cycle and an associated development program to provide a contingency plan to the current DOE effort to license once-through spent Light Water Reactor (LWR) fuel for disposition at Yucca Mountain (YM). The intent is to fully support the forthcoming June 2008 DOE submittal to the Nuclear Regulatory Commission (NRC) based upon the latest DOE draft DOE/EIS-0250F-SID dated October 2007 which shows that the latest DOE YM doses would readily satisfy the anticipated NRC and Environmental Protection Agency (EP) standards. The proposed Advance Fuel Cycle can offer potential resolution of obstacles that might arise during the NRC review and, particularly, during the final hearings process to be held in Nevada. Another reason for the proposed concept is that a substantial capacity growth of the YM repository will be necessary to accommodate the SNF of Advance Light Water Reactors (ALWRs) currently under consideration for United States (U. S.) electricity production (1) and the results of the recently issued study by the Electric Power Research Institute (EPRI) to reduce CO_2 emissions (2). That study predicts that by 2030 U. S. nuclear power generation would grow by 64 GigaWatt electrical (GWe) and account for 25.5 percent of the overall U. S. electrical generation. The current annual SNF once-through fuel cycle accumulation would rise from 2000-2100 MT (Metric Tons) to about 3480 MT in 2030 and the total SNF inventory, would reach nearly 500,000 MT by 2100 if U. S. nuclear power continues to grow at 1.1 percent per year after 2030. That last projection does not account for any SNF reduction due to increased fuel burnup or any increased capacity needed "to establish supply Global Nuclear Energy Partnership (GNEP) arrangements among nations to provide nuclear fuel and taking back spent fuel for recycling without spreading enrichment and reprocessing technologies" (3). The anticipated capacity of 120 MT planned to be authorized by the U. S. Congress for commercial SNF and nuclear weapons would amount to only one quarter of the needs by 2100. The contingency strategy proposes to1. Recognize the presence of Transuranics (TRUs) at YM due to defense wastes being disposed there.2. Discourage the accumulation of separated Pu to satisfy the National Energy Policy Development Group of May 2001.3. Dispose the "oldest" once-through fuel at YM due to its reduced burnup, decay heat, and Transuranics ( TRUs) content and to use the NRC to be approved Total System Performance Analysis (TSPA) methodology to show that its impact on dose would be minimal compared to the dose "performance floor" set by defense wastes (4).4. Avoid disposal of radioactive products at YM which do not need long isolation periods, i.e. Uranium (U), short term fission products, including Cesium and Strontium which can be allowed to decay separately in order to reduce the heat produced in SNF at YM (5). That element of the strategy will reduce significantly the material volume reaching YM.5. Stabilize the fission products capable of migrating, e.g. fixing the technicium in a matrix with cladding hulls (3) and capturing iodine in a stable solid waste form because its meteorological release as carried out in France will not be allowed in the U. S.6. Burn TRUs in LWRs in 10 to 20 percent fertile free fuel (FFF) or annular inert matrix fuel (IMF) rods using zirconia, ZrO_2 and its cubic phase stabilized with Ytria (Y_2O_3) and including a burnable poison (erbia for pressurized water and gadolinia for boiling water reactors). References (6) and (7) show that after one fuel cycle, the Pu content of IMF is "highly undesirable" or "conceivably unusable ".7. Disposition the separable IMF fuel rods at YM after one cycle to avoid multiple costly recycles because, as noted in reference (8), "cubic zirconia is attractive as both a nuclear fuel-form and a nuclear waste form because it is an actinide host phase ".The proposed SNF contingency plan at YM will start sooner, be safer, more responsible, and much more economical than the proposed GNEP strategy because it does not need advanced fast reactors and multiple recycles.There is a need for a strong and continued development program to assure the success of the proposed contingency fuel cycle strategy. As suggested by a DOE "Path to Sustainable Nuclear Energy" (9), it emphasizes waste forms reaching YM, assures their compatibility with YM environment, and provides potential to grow the capacity of YM. It is briefly outlined during the description of the contingency plan.
机译:本文的目的是制定一个先进的轻水(LWR)燃料循环以及相关的开发计划,以为美国能源部当前的一次性使用过的轻水反应堆(LWR)燃料许可在尤卡山的处置提供应急计划。 (YM)。目的是完全支持即将于2008年6月提交给核监管委员会(NRC)的DOE,该DOE是基于2007年10月发布的最新DOE / EIS-0250F-SID草案,该草案显示DOE YM的最新剂量将很容易满足预期的NRC。和环境保护局(EP)的标准。拟议的提前加油周期可以解决NRC审查期间,特别是在内华达州举行的最终听证过程中可能出现的障碍。提出该概念的另一个原因是,YM储存库的容量需要大量增加,以适应当前考虑用于美国(US)电力生产的先进轻水反应堆(ALWR)的SNF(1)及其结果。电力研究所(EPRI)最近发布的一项研究,旨在减少CO_2排放(2)。该研究预测,到2030年,美国核发电量将增长64吉瓦电力(GWe),占美国总发电量的25.5%。当前的年度SNF直通式燃料循环累积量将从2000-2100吨(公吨)增加到2030年的3480吨,如果美国核电继续以1.1%的速度增长,到2100年SNF的总库存将达到近500,000吨。每年2030年以后。最后的预测不考虑由于燃料消耗增加而导致的SNF减少,或“在国家之间建立供应全球核能伙伴关系(GNEP)安排以提供核燃料并回收乏燃料以进行回收所需要的任何能力”而不传播浓缩和后处理技术”(3)。到2100年,美国国会计划批准的120吨商用SNF和核武器的预期容量将仅占需求的四分之一。 1.认识到YM处存在超铀化合物(TRU),因为那里放置了国防废物。 2.阻止分离的Pu的积累,以满足2001年5月的国家能源政策发展小组的要求。 3.由于燃烧,减少的热量和超铀化合物(TRUs)含量减少,在YM处处置“最老的”直通式燃料,并使用NRC获得批准的总体系统性能分析(TSPA)方法论来表明其对燃料的影响与国防废物设定的“性能底限”剂量相比,这种剂量最小(4)。 4.避免在不需要长期隔离的YM处处置放射性产品,即铀(U),短期裂变产品,包括铯和锶,可以分别衰变以减少YM处SNF产生的热量(5)。该策略的要素将显着减少达到YM的物料量。 5.稳定能够迁移的裂变产物,例如将the头固定在带有包壳(3)的矩阵中,并以稳定的固体废物形式捕获碘,因为美国不允许在法国进行气象释放。 6.使用氧化锆,ZrO_2及其经Ytria(Y_2O_3)稳定并含有可燃毒物(用于加压水的塞尔维亚)的氧化锆,在轻水堆中的TRU中燃烧10%至20%的可肥性自由燃料(FFF)或环形惰性基质燃料(IMF)棒和用于沸水反应堆的氧化g)。参考文献(6)和(7)表明,在一个燃料循环之后,IMF的Pu含量“非常不理想”或“可能无法使用”。 7.在一个周期后将可分离的IMF燃料棒置于YM,以避免多次昂贵的回收,因为如参考文献(8)所述,“立方氧化锆作为核燃料形式和核废料形式都具有吸引力,因为它是an系元素主机阶段”。 提议的YM SNF应急计划将比拟议的GNEP战略更快,更安全,更负责任,更经济,因为它不需要先进的快速反应堆和多次循环利用。 需要强有力的持续发展计划,以确保拟议的应急燃料循环战略的成功。正如美国能源部“通往可持续核能之路”(9)所建议的那样,它强调废物形式进入YM,确保其与YM环境兼容,并具有增加YM容量的潜力。在应急计划的描述中简要概述了该计划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号