首页> 外文会议>HT2008;ASME summer heat transfer conference >PERFORMANCE OF THERMAL ENHANCEMENT MATERIALS IN HIGH PRESSURE METAL HYDRIDE STORAGE SYSTEMS
【24h】

PERFORMANCE OF THERMAL ENHANCEMENT MATERIALS IN HIGH PRESSURE METAL HYDRIDE STORAGE SYSTEMS

机译:高压金属氢化物储存系统中热增强材料的性能

获取原文

摘要

Over the past two years, key issues associated with the development of realistic metal hydride storage systems have been identified and studied at Purdue University's Hydrogen Systems Laboratory, part of the Energy Center at Discovery Park. Ongoing research projects are aimed at the demonstration of a prototype large-scale metal hydride tank that achieves fill and release rates compatible with current automotive use. The large-scale storage system is a prototype with multiple pressure vessels compatible with 350 bar operation.Tests are conducted at the Hydrogen Systems Lab in a 1000 ft2 laboratory space comprised of two test cells and a control room that has been upgraded for hydrogen service compatibility. The infrastructure and associated data acquisition and control systems allow for remote testing with several kilograms of high-pressure reversible metal hydride powder.Managing the large amount of heat generated during hydrogen loading directly affects the refueling time. However, the thermal management of hydride systems is problematic because of the low thermal conductivity of the metal hydrides (~ 1 W/m-K). Current efforts are aimed at optimizing the filling-dependent thermal performance of themetal hydride storage system to minimize the refueling time of a practical system.Combined heat conduction within the metal hydride and the enhancing material particles, across the contacts of particles and within the hydrogen gas between non-contacted particles plays a critical role in dissipating heat to sustain high reaction rates during refueling. Methods to increase the effective thermal conductivity of metal hydride powders include using additives with substantially higher thermal conductivity such as aluminum, graphite, metal foams and carbon nanotubes. This paper presents the results of experimental studies in which various thermal enhancement materials are added to the metal hydride powder in an effort to maximize the effective thermal conductivity of the test bed. The size, aspect ratio, and intrinsic thermal conductivity of the enhancement materials are taken into account to adapt heat conduction models through composite nanoporous media. Thermal conductivity and density of the composite materials are measured and enhancement metrics are calculated to rate performance of composites. Experimental results of the hydriding process of thermally enhanced metal hydride powder are compared to un-enhanced metal hydride powder and to model predictions.The development of the Hydrogen Systems Laboratory is also discussed in light of the lessons learned in managing large quantities of metal hydride and high pressure hydrogen gas.
机译:在过去的两年中,与现实的金属氢化物存储系统开发相关的关键问题已在普渡大学的氢系统实验室(发现公园能源中心的一部分)中进行了识别和研究。正在进行的研究项目旨在演示一种原型大型金属氢化物罐,该罐的填充和释放速率均与当前的汽车使用兼容。大型存储系统是具有多个压力容器的原型,可兼容350 bar的操作。 在氢气系统实验室的一个1000平方英尺实验室空间中进行测试,该实验室空间包​​括两个测试单元和一个控制室,该控制室已进行了升级以提高氢气服务的兼容性。基础设施以及相关的数据采集和控制系统允许使用几千克高压可逆金属氢化物粉末进行远程测试。 管理加氢过程中产生的大量热量直接影响加油时间。但是,由于金属氢化物的导热系数低(〜1 W / m-K),因此氢化物系统的热管理存在问题。当前的努力旨在优化与填充相关的热性能。 金属氢化物存储系统,以减少实际系统的加油时间。 金属氢化物和增强材料颗粒之间,颗粒之间的接触处以及非接触颗粒之间的氢气中的组合热传导在耗散热量以维持加油过程中的高反应速率方面起着至关重要的作用。增加金属氢化物粉末的有效导热率的方法包括使用导热率大大提高的添加剂,例如铝,石墨,金属泡沫和碳纳米管。本文介绍了实验研究的结果,其中将各种热增强材料添加到金属氢化物粉末中,以最大程度地提高测试台的有效导热率。考虑到增强材料的尺寸,长宽比和固有热导率,以适应通过复合纳米多孔介质的热传导模型。测量复合材料的导热率和密度,并计算增强指标以评估复合材料的性能。将热增强金属氢化物粉末的氢化过程的实验结果与未增强的金属氢化物粉末进行了比较,并进行了模型预测。 还根据在管理大量金属氢化物和高压氢气方面获得的经验教训,讨论了氢气系统实验室的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号