首页> 外文会议>ASME turbo expo >UNSTEADY ROTOR-STATOR INTERACTION OF A RADIAL-INFLOW TURBINEWITH VARIABLE NOZZLE VANES
【24h】

UNSTEADY ROTOR-STATOR INTERACTION OF A RADIAL-INFLOW TURBINEWITH VARIABLE NOZZLE VANES

机译:径向进气涡轮增压变桨叶片的非定转子相互作用

获取原文

摘要

For radial turbines used in automotive turbochargers, the importance of variable flow capacity by means of a variable geometry system is getting higher under the growing demands for improved engine performance and reduced engine emissions. To realize a high-performance and aeromechanically-reliable turbine stage, the unsteady flow phenomena caused by the rotor-stator interaction and their impact on the mechanical integrity must be understood deeply.In the present paper, the periodic disturbance generated by the rotor-stator interaction of a research turbine stage is investigated. The research purposes are (i) to extract the flow phenomenon which is responsible for the blade excitation, (ii) to identify the operating condition at which the influence of the extracted phenomenon becomes stronger, and (iii) to clarify how and where the disturbance energy is fed into the blades. Three dimensional unsteady stage CFD simulations are conducted to investigate the unsteady stage interaction. Two parameters are mainly focused: the nozzle vane angle and the stage pressure ratio. By changing the former, the effect of different degrees of reaction can be examined, while by changing the latter, the effect of different Mach number levels can be evaluated. The unsteady blade loading is extracted from the CFD result and coupled with the blade displacement obtained from the eigen vibratory mode analysis to examine the aeromechanical influence of the unsteady loading on the impeller blade excitation at various operating conditions.The nozzle shock wave and nozzle clearance flow are identified as the principal phenomena for the impeller blade excitation. At the mean section of the impeller blade the nozzle shock wave impinges on the S/S and diffracts on the P/S periodically, these two processes constitute high unsteady blade loading at the impeller L/E. At the shroud section the nozzle clearance flow generates high fluctuation in the relative flow direction to the impeller which results in high unsteadiness inthe blade loading. These two phenomena are more important at vane closed conditions due to the higher nozzle loading. The higher the pressure ratio, the higher the normalized loading, though once the nozzle shock wave is established the normalized loading does not increase appreciably. Most of the excitation energy enters the blade at the impeller L/E at the closed condition, while it enters the blade both at the L/E and T/E at the open condition.
机译:对于用于汽车涡轮增压器的子午线涡轮机,随着对改进发动机性能和减少发动机排放的需求不断增长,借助于可变几何形状系统的可变流量的重要性越来越高。为了实现高性能和气动可靠的涡轮机级,必须深刻理解由转子-定子相互作用引起的非稳态流动现象及其对机械完整性的影响。研究涡轮级的相互作用。研究目的是(i)提取引起叶片激励的流动现象;(ii)识别所提取现象的影响变得更强的工作条件;以及(iii)弄清扰动的方式和位置能量被馈送到叶片中。进行了三维非稳态阶段CFD仿真,以研究非稳态阶段的相互作用。主要关注两个参数:喷嘴叶片角度和级压力比。通过改变前者,可以检查不同反应程度的影响,而通过改变后者,可以评估不同马赫数水平的影响。从CFD结果中提取非稳态叶片载荷,并结合本征振动模式分析获得的叶片位移,以研究在各种工况下非稳态载荷对叶轮叶片激振的气动力学影响。被确定为叶轮叶片励磁的主要现象。在叶轮叶片的平均截面处,喷嘴冲击波周期性地撞击在S / S上,并在P / S上发生衍射,这两个过程在叶轮L / E上构成了很高的不稳定叶片载荷。在罩部分处,喷嘴间隙流在相对于叶轮的相对流动方向上产生很大的波动,这导致叶片负载的高度不稳定。由于较高的喷嘴负载,这两种现象在叶片关闭条件下更为重要。压力比越高,归一化负载就越高,尽管一旦建立了喷嘴冲击波,归一化负载就不会明显增加。在关闭状态下,大多数激发能在叶轮L / E处进入叶片,而在打开状态下,其大部分在L / E和T / E处进入叶片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号