【24h】

The influence of motion and stress on optical fibers

机译:运动和应力对光纤的影响

获取原文

摘要

We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result ofthis work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focalratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitoredthe fibers for signs of FRD. We find that transient FRD events were common during the portions of the testswhen motion was at telescope slew rates, but dropped to negligible levels during rates of motion typical forscience observation. Tests of fiber transmission and FRD conducted both before and after the lifetime testsreveal that while transmission values do not change over the 10+ years of simulated wear, a clear increase inFRD is seen in all 18 fibers tested. This increase in FRD is likely due to microfractures that develop over timefrom repeated flexure of the fiber bundle, and stands in contrast to the transient FRD events that stem fromlocalized stress and subsequent modal diffusion of light within the fibers. There was no measurable wavelengthdependence on the increase in FRD over 350 nm to 600 nm. We also report on bend radius tests conductedon individual fibers and find the 266 μm VIRUS fibers to be immune to bending-induced FRD at bend radiiof R 10 cm. Below this bend radius FRD increases slightly with decreasing radius. Lastly, we give detailsof a degradation seen in the fiber bundle currently deployed on the Mitchell Spectrograph (formally VIRUS-P)at McDonald Observatory. The degradation is shown to be caused by a localized shear in a select number ofoptical fibers that leads to an explosive form of FRD. In a few fibers, the overall transmission loss through theinstrument can exceed 80%. These results are important for the VIRUS instrument, and for both current andproposed instruments that make use of optical fibers, particularly when the fibers are in continual motion duringan observation, or experience repeated mechanical stress during their deployment.≥© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
机译:我们报告了在VIRUS仪器的光纤上进行的广泛测试。这项工作的主要结果探讨了VIRUS光纤束上10年以上的模拟磨损如何影响光纤的传输和聚焦退化(FRD)。在加速寿命测试中,我们不断监测纤维是否存在FRD迹象。我们发现,在运动的某些部分中,当瞬态FRD事件以望远镜的回转速率运动时是常见的,但是在典型的科学观察运动速率中,瞬态FRD事件下降到可以忽略的水平。在寿命测试之前和之后都进行了光纤传输和FRD的测试,结果表明尽管在10多年的模拟磨损中传输值没有变化,但在所有测试的18根光纤中,FRD都明显增加。 FRD的这种增加很可能是由于纤维束反复弯曲随时间而产生的微裂纹,与由于局部应力和随后的光在光纤内的模态扩散引起的瞬态FRD事件形成了鲜明的对比。在350 nm至600 nm范围内,FRD的增加没有可测量的波长依赖性。我们还报告了对单个纤维进行的弯曲半径测试,发现266μmVIRUS纤维在R 10 cm的弯曲半径下不受弯曲引起的FRD的影响。在此弯曲半径以下,FRD随着半径的减小而略有增加。最后,我们详细介绍了目前在麦当劳天文台的Mitchell光谱仪(正式为VIRUS-P)上部署的光纤束中出现的降解情况。显示该降解是由一定数量的光纤中的局部剪切引起的,该剪切导致FRD的爆炸形式。在几根光纤中,通过仪器的总传输损耗可能超过80%。这些结果对于VIRUS仪器以及使用光纤的当前仪器和拟议仪器都很重要,特别是当光纤在观察过程中连续运动,或在部署过程中经受反复的机械应力时。≥©(2012)COPYRIGHT Society光电仪器工程师(SPIE)。摘要的下载仅允许个人使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号