首页> 外文会议>Conference on Applied Optics and Photonics China >Large-scale fast dwell time algorithm for complex structure phase optical elements based on magnetorheological polishing
【24h】

Large-scale fast dwell time algorithm for complex structure phase optical elements based on magnetorheological polishing

机译:基于磁流变抛光的复杂结构相光学元件大规模快速停留时间算法

获取原文

摘要

Due to the characteristics of large depth, small period and high steepness, phase optical elements with complex structure need to use a small size removal function in magnetorheological processing, and use very small line spacing and step size values when planning the polishing path, so the dwell time matrix is very large, and the dwell time calculation speed is slow; besides, because of the complicated phase optical profile, it is difficult to achieve high-precision convergence of the dwell time. This paper proposes a fast and high-precision numerical iterative dwell time algorithm for complex structure phase optical elements, this paper proposes the concept of the dwell point matrix, which realizes the methods of the FFT convolution multi-core parallel algorithm to calculate the dwell time in the entire iterative calculation process. Also, to achieve high-precision convergence of the dwell time calculation, this paper proposes a calculation rule based on machine dynamic performance matching, when calculating the dwell time, the speed, acceleration, and speed smoothness of the machine were matched with the performance of the magnetorheological machine, which improves the stability of the machine. A large-diameter Continuous Phase Plate (CPP) is processed on a magnetorheological machine. The shape of the CPP contains a random structure of various periods. The initial RMS = 228.07nm, the CPP data matrix size is 2424 × 2424, and the line spacing is 0.6mm, the dwell time is calculated using the algorithm described in this article, the entire calculation process takes only 4.2 seconds, the calculation speed is about 3 times faster than the traditional iterative methods, the CPP residual error RMS converges to 10.2nm; After the CPP processing is completed, the CPP actual residual error RMS is reduced from the original 228.07nm to 15.6nm, and its convergence rate is 93.1%, which shows that the algorithm has high calculation efficiency and convergence accuracy.
机译:由于大深度,小时期和高陡度的特点,具有复杂结构的相光元件需要在磁流变处理中使用小尺寸的去除功能,并在规划抛光路径时使用非常小的线间距和台阶尺寸值,所以停留时间矩阵非常大,停留时间计算速度慢;此外,由于相位光学轮廓复杂,因此难以实现停留时间的高精度收敛。本文提出了一种复杂结构相位光学元件的快速和高精度数值迭代停留时间算法,本文提出了停留点矩阵的概念,这实现了FFT卷积多核并行算法的方法来计算停留时间在整个迭代计算过程中。另外,为了实现停留时间计算的高精度收敛,本文提出了一种基于机器动态性能匹配的计算规则,当计算停留时间时,机器的速度,加速度和速度平滑与性能相匹配磁流变机,提高了机器的稳定性。在磁流线机上加工大直径连续相板(CPP)。 CPP的形状包含各种时段的随机结构。初始RMS = 228.07nm,CPP数据矩阵尺寸为2424×2424,线间距为0.6mm,使用本文中描述的算法计算停留时间,整个计算过程只需要4.2秒,计算速度比传统迭代方法快3倍,CPP剩余误差RMS会聚到10.2nm;在完成CPP处理之后,将CPP实际残留误差RMS从原始的228.07nm降至15.6nm,其收敛速率为93.1%,表明该算法具有高计算效率和收敛精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号