首页> 外文会议>ASME Internal Combustion Engine Division technical conference >INVERSE ANALYSIS OF IN-CYLINDER GAS-WALL BOUNDARY CONDITIONS: INVESTIGATION OF A YITTRIA STABILIZED ZIRCONIA THERMAL BARRIER COATING FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION
【24h】

INVERSE ANALYSIS OF IN-CYLINDER GAS-WALL BOUNDARY CONDITIONS: INVESTIGATION OF A YITTRIA STABILIZED ZIRCONIA THERMAL BARRIER COATING FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION

机译:气瓶内壁边界条件的逆分析:均质充压点火的氧化钇稳定氧化锆热障涂层的研究

获取原文

摘要

Thermal Barrier Coatings (TBC) applied to in-cylinder surfaces of a Low Temperature Combustion (LTC) engine provide opportunities for enhanced cycle efficiency via two mechanisms: (ⅰ) positive impact on thermodynamic cycle efficiency due to combustion/expansion heat loss reduction, and (ⅱ) enhanced combustion efficiency. Heat released during combustion elevates TBC surface temperatures, directly impacting gas-wall heat transfer. Determining the magnitude and phasing of the associated TBC surface temperature swing is critical for correlating coating properties with the measured impact on combustion and efficiency. Although fast-response thermocouples provide a direct measurement of combustion chamber surface temperature in a metal engine, the temperature and heat flux profiles at the TBC-treated gas-wall boundary are difficult to measure directly. Thus, a technique is needed to process the signal measured at the sub-TBC sensor location and infer the corresponding TBC surface temperature profile. This task can be described as an Inverse Heat Conduction Problem (IHCP), and it cannot be solved using the conventional analyticumeric techniques developed for 'direct' heat flux measurements. This paper proposes using an Inverse Heat Conduction solver based on the Sequential Function Specification Method (SFSM) to estimate heat flux and temperature profiles at the wall-gas boundary from measured sub-TBC temperature. The inverse solver is validated ex situ under HCCI like thermal conditions in a custom fabricated radiation chamber where fast-response thermocouples are exposed to a known heat pulse in a controlled environment. The analysis is extended in situ, to evaluate surface conditions in a single-cylinder, gasoline-fueled, HCCI engine. The resulting SFSM-based inverse analysis provides crank angle resolved TBC surface temperature profiles over a host of operational conditions. Such metrics may be correlated with TBC thermophysical properties to determine the impact(s) of material selection on engine performance, emissions, heat transfer, and efficiencies. These efforts will also guide next-generation TBC design.
机译:应用于低温燃烧(LTC)发动机缸内表面的热障涂层(TBC)通过以下两种机制提供了提高循环效率的机会:(ⅰ)由于燃烧/膨胀热损失的减少,对热力学循环效率产生积极影响;以及(ⅱ)提高燃烧效率。燃烧过程中释放的热量升高了TBC表面温度,直接影响了气体壁的传热。确定相关的TBC表面温度波动的幅度和相位对于将涂层性能与所测得的对燃烧和效率的影响相关联至关重要。尽管快速响应的热电偶可以直接测量金属发动机中燃烧室的表面温度,但是在TBC处理的气壁边界处的温度和热通量分布图很难直接测量。因此,需要一种技术来处理在次TBC传感器位置处测得的信号并推断出相应的TBC表面温度曲线。此任务可以描述为逆导热问题(IHCP),而无法使用为“直接”热通量测量开发的常规分析/数值技术来解决。本文提出使用基于序贯函数规范方法(SFSM)的逆导热求解器,根据测得的亚TBC温度估算壁气边界处的热通量和温度曲线。在像HCCI一样的热条件下,在定制的辐射室中对逆求解器进行了现场验证,在该辐射室中,快速响应的热电偶在受控环境中暴露于已知的热脉冲中。该分析在原位扩展,以评估单缸,汽油燃料,HCCI发动机的表面状况。所得基于SFSM的反分析可在许多运行条件下提供曲柄角分辨的TBC表面温度曲线。这样的度量可以与TBC热物理性质相关联,以确定材料选择对发动机性能,排放,传热和效率的影响。这些努力也将指导下一代TBC设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号