首页> 外文会议>IEEE Aerospace Conference >A theoretical analysis of Ka-band turnaround noise in radios used for deep space comm/Nav
【24h】

A theoretical analysis of Ka-band turnaround noise in radios used for deep space comm/Nav

机译:用于深空通信/导航的无线电中的Ka波段周转噪声的理论分析

获取原文

摘要

Deep-space missions typically use a radio link between the Deep Space Network (DSN) ground stations and the spacecraft to transmit telemetry data and to generate the range and Doppler shift measurements that enable precise navigation. The amount of carrier phase noise present in this radio link is an important metric of performance, and radios are often designed to minimize the impact of this noise. From a communication perspective, more noise causes an increase in the system's frame-error rate, and from a navigation perspective more noise causes larger errors in the range and Doppler shift measurements. A thorough understanding of how carrier phase noise enters the spacecraft radio system and how that noise is modified during the communication process enables the radio designers to build a better system. This paper contributes to the current body of knowledge on turnaround noise for Deep Space communication and Doppler data, and how to mitigate the resulting performance degradation. In particular, this paper focuses on systems with an X-band uplink and a Ka-band downlink, as is planned for the NASA Solar Probe Plus and Europa Missions. The analysis in this paper compares the design equations listed in the DSN Telecommunications Link Design Handbook (810-005) with more rigorous and higher fidelity equations recently proposed by one of the authors. Numerous factors that affect the final noise level are considered: thermal noise at the DSN receiver, turn-around factors, uplink scintillation, uplink thermal noise, radio filtering effects, downlink scintillation, DSN receiver filtering, and implementation loss. The equations that result from this analysis accurately verify and explain data collected from a recent DTF-21 test. The resulting higher fidelity models permit analysts to make refinements to current radio designs to mitigate this interference. Several example mitigation techniques are discussed and evaluated for the previously mentioned missions in terms of n- ise levels and the resulting frame-error rates.
机译:深空飞行任务通常使用深空网络(DSN)地面站与航天器之间的无线电链路来传输遥测数据,并生成能够进行精确导航的测距和多普勒频移测量值。存在于该无线电链路中的载波相位噪声量是性能的重要指标,并且通常将无线电设计为将这种噪声的影响最小化。从通信的角度来看,更多的噪声会导致系统的帧错误率增加,而从导航的角度来看,更多的噪声会导致距离和多普勒频移测量中的较大误差。对载波相位噪声如何进入航天器无线电系统以及在通信过程中如何修改该噪声的透彻理解使无线电设计人员可以构建更好的系统。本文为有关深空通信和多普勒数据的周转噪声以及如何减轻由此导致的性能下降提供了最新的知识。特别是,本文重点介绍了针对NASA Solar Probe Plus和Europa Missions计划的具有X波段上行链路和Ka波段下行链路的系统。本文的分析将DSN电信链路设计手册(810-005)中列出的设计方程式与其中一位作者最近提出的更为严格和更高保真度的方程式进行了比较。考虑了影响最终噪声水平的许多因素:DSN接收器的热噪声,周转因子,上行链路闪烁,上行链路热噪声,无线电滤波效果,下行链路闪烁,DSN接收器滤波和实现损失。通过该分析得出的方程式可以准确地验证和解释从最近的DTF-21测试中收集到的数据。由此产生的更高保真度模型使分析人员可以对当前的无线电设计进行改进,以减轻这种干扰。针对前文提到的任务,讨论了几种示例缓解技术,并从n级别和所产生的帧错误率方面进行了评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号