首页> 外文会议>IEEE Aerospace Conference >Aerocapture design study for a Titan polar orbiter
【24h】

Aerocapture design study for a Titan polar orbiter

机译:泰坦极地轨道器的航空捕捉设计研究

获取原文

摘要

In 2014 a team at NASA Goddard Space Flight Center (GSFC) studied the feasibility of using active aerocapture to reduce the chemical ¿¿¿¿ requirements for inserting a small scientific satellite into Titan polar orbit. The scientific goals of the mission would be multi-spectral imaging and active radar mapping of Titan's surface and subsurface. The study objectives were to: (i) identify and select from launch window opportunities and refine the trajectory to Titan; (ii) study the aerocapture flight path and refine the entry corridor; (iii) design a carrier spacecraft and systems architecture; (iv) develop a scientific and engineering plan for the orbital portion of the mission. Study results include: (i) a launch in October 2021 on an Atlas V vehicle, using gravity assists from Earth and Venus to arrive at Titan in January 2031; (ii) initial aerocapture via an 8-km wide entry corridor to reach an initial 350¿¿6000 km orbit, followed by aerobraking to reach a 350¿¿1500 km orbit, and a periapse raise maneuver to reach a final 1500 km circular orbit; (iii) a three-part spacecraft system consisting of a cruise stage, radiator module, and orbiter inside a heat shield; (iv) a 22-month mission including station keeping to prevent orbital decay due to Saturn perturbations, with 240 Gb of compressed data returned. High-level issues identified include: (i) downlink capability ¿¿¿ realistic downlink rates preclude the desired multi-spectral, global coverage of Titan's surface; (ii) power ¿¿¿ demise of the NASA ASRG (Advanced Stirling Radioisotope Generator) program, and limited availability at present of MMRTGs (Multi-Mission Radioisotope Generators) needed for competed outer planet missions; (iii) thermal ¿¿¿ external radiators must be carried to remove 4 kW of waste heat from MMRTGs inside the aeroshell, requiring heat pipes that pass through the aeroshell lid, compromising shielding ability; (iv) optical navigation to reach the entry corridor; (v) the NASA requirement of continuous- critical event coverage for the orbiter, especially during the peak heating of the aerocapture when the radio link will be broken. In conclusion, although Titan aerocapture allows for considerable savings in propellant mass, this comes at a cost of increased mission complexity. Further architecture study and refinement is required to reduce high-level mission risks and to elucidate the optimum architecture.
机译:2014年,美国国家航空航天局戈达德太空飞行中心(GSFC)的一个小组研究了使用主动航空捕获来减少将小型科学卫星插入土卫六极地轨道的化学要求的可行性。该任务的科学目标是对泰坦的表面和地下进行多光谱成像和有源雷达测绘。研究目标是:(i)识别发射窗口的机会并从中选择机会,并完善通往泰坦的轨迹; (ii)研究飞机的飞行路线并完善进入走廊; (iii)设计航母航天器和系统架构; (iv)为飞行任务的轨道部分制定科学和工程计划。研究结果包括:(i)2021年10月使用地球和金星的重力辅助在Atlas V运载火箭上进行发射,并于2031年1月到达土卫六; (ii)通过8公里宽的入口走廊进行初始空中捕获,以达到初始350-6000公里的轨道,然后进行空中制动以达到350-1500公里的轨道,并进行近日起升飞行,以最终达到1500公里的圆形轨道; (iii)三部分组成的航天器系统,由巡航平台,散热器模块和热屏蔽罩内的轨道飞行器组成; (iv)进行了为期22个月的飞行任务,其中包括保持站以防止土星扰动引起的轨道衰减,并返回了240 Gb的压缩数据。确定的高级别问题包括:(i)下行链路能力-现实的下行链路速率排除了所需的土卫六表面多光谱,全球覆盖范围; (ii)NASA ASRG(高级斯特林放射性同位素发生器)计划的停产,以及目前竞争的外行星飞行任务所需的MMRTG(多任务放射性同位素发生器)的可用性有限; (iii)必须携带散热用的外部散热器,以从机壳内部的MMRTG中除去4千瓦的废热,这要求热管穿过机壳盖,从而削弱了屏蔽能力; (iv)光学导航到达入口走廊; (v)NASA对轨道器的连续关键事件覆盖的要求,尤其是在无线电链路将被破坏的航空捕获的峰值加热期间。总之,尽管泰坦航空捕获技术可以大大节省推进剂的质量,但这是以增加任务复杂性为代价的。需要进行进一步的架构研究和改进,以减少高级别任务风险并阐明最佳架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号