首页> 外文会议>IEEE Aerospace Conference >Attitude regulation of a free-flying space robot during contact operations
【24h】

Attitude regulation of a free-flying space robot during contact operations

机译:接触操作中自由飞行太空机器人的姿态调节

获取原文

摘要

To ensure efficient transportation of large space structures in the future, it has been suggested that they be transported in an unassembled and compact form and then assembled inorbit using space robots. Forces generated during open contact operations have to be taken into careful consideration so that structural components can be successfully acquired and assembled by the robot. Unlike ground-based robots, the free-flying space robot base will deviate from its desired orientation when the spacecraft comes in contact with structural elements. This effect on spacecraft attitude may adversely affect communication, solar energy collection and in extreme cases the stability of the spacecraft. While thrusters can be used to provide regulation torques, in a scenario where the spacecraft is surrounded by structural components that are to be assembled, filing clusters is undesirable. Further, the force impulses generated by thrusters have poor resolution and hence are unsuitable for providing fine regulation. In this paper, the authors utilize reaction wheels (RWs) to provide accurate and smooth control torques without the need to have on-board fuel. By adopting the commonly used canonical-form dynamic model of a space robot as found in the literature, force tracking may be achieved, but a desired orientation of the spacecraft cannot be guaranteed. To solve this problem, the authors build dynamic equations of the space manipulator and the spacecraft base separately to form basis for separate contact-force control and attitude control of the platform. By taking a further step from previous literature which mainly try to maintain contact between the end-effector and the target, hybrid force/motion control is extended to a space robot in this paper in order to track a desired force trajectory and simultaneously maintain a desired relative position between the end-effector and the target to avoid inducing tumbling torques. A recently proposed adaptive variable structure contr- l method is applied to design a robust attitude controller taking into account system uncertainties and external disturbances. A two-link planar space robot model is simulated to track a desired uni-axial contact force and regulate the spacecraft attitude during contact with a free-floating target. The simulation results have demonstrated better robustness and performance of the proposed controller, such as shorter settling time in the presence of disturbance and smaller force tracking error, in comparison to a conventional feedback linearisation attitude controller.
机译:为了确保将来有效地运输大型空间结构,已经建议将它们以未组装和紧凑的形式运输,然后使用太空机器人组装在轨道上。必须仔细考虑在开放式接触操作过程中产生的力,以便机器人可以成功地获取和组装结构部件。与地面机器人不同,自由飞行的太空机器人基座在航天器与结构元件接触时会偏离其期望的方向。这种对航天器姿态的影响可能会对通信,太阳能收集以及极端情况下的航天器稳定性产生不利影响。尽管推进器可用于提供调节扭矩,但在航天器被要组装的结构部件包围的情况下,锉屑簇是不希望的。此外,由推进器产生的力脉冲具有较差的分辨率,因此不适于提供精细的调节。在本文中,作者利用反作用轮(RW)来提供准确而平稳的控制扭矩,而无需使用车载燃料。通过采用文献中发现的通常使用的空间机器人的规范形式的动力学模型,可以实现力跟踪,但是不能保证航天器的期望方向。为了解决这个问题,作者分别建立了空间操纵器和航天器基座的动力学方程,从而为分别进行平台的接触力控制和姿态控制奠定了基础。通过从主要尝试保持末端执行器和目标之间接触的先前文献采取的进一步的步骤出发,本文将混合力/运动控制扩展到太空机器人,以跟踪所需的力轨迹并同时保持所需的力轨迹。末端执行器和目标之间的相对位置,以避免引起翻滚扭矩。一种最近提出的自适应变结构控制方法被用于设计一种考虑系统不确定性和外部干扰的鲁棒姿态控制器。模拟了两连杆式平面空间机器人模型,以跟踪所需的单轴接触力并在与自由漂浮的目标接触期间调节航天器的姿态。仿真结果表明,与传统的反馈线性化姿态控制器相比,所提出的控制器具有更好的鲁棒性和性能,例如在出现干扰时的建立时间更短,力跟踪误差更小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号