首页> 外文会议>IEEE Aerospace Conference >Computationally engineered advanced manufacturing of parts
【24h】

Computationally engineered advanced manufacturing of parts

机译:通过计算机工程设计的高级零件制造

获取原文

摘要

In this work we develop an algorithm using finite element and gradient descent methods in order to compute ¿¿¿optimal¿¿¿ heterogeneous multi-material configurations for objects subjected to complex environmental loading. Specifically, we compute heterogeneous elasticity fields to minimize the difference between actual and desired displacement for selected surfaces of objects subjected to loads which would produce substantively different displacements in an object of the same geometry but composed of homogeneous materials. Elasticity is computed with an iterative gradient descent method with line searches. This algorithm is intended for use in computer-aided design environments to facilitate the development of objects composed of heterogeneous material distributions which may vary in three dimensions, thereby minimizing factors such as cost or density to achieve reductions in part material expense or weight, or achieving particular performance with a specific geometry. The emerging field of additive manufacturing processes such as 3D printing has enabled the creation of such objects. While biological processes frequently optimize both geometric form and material composition, the majority of traditional engineering design optimization has focused on geometry rather than material configuration. Materials are typically uniform or composite and assigned to entire parts or assemblies. This work demonstrates a novel computational method for optimizing such material configurations for particular parts. Such custom highperformance part fabrication is projected to become widespread as the field of additive manufacturing further matures and expands, and unified tools to perform both geometric and material configuration optimization will become increasingly important to fully implement the advantages of this fabrication method.
机译:在这项工作中,我们开发了一种使用有限元和梯度下降法的算法,以计算承受复杂环境载荷的物体的“最佳”异质多材料配置。具体来说,我们计算非均质弹性场,以使选定对象承受载荷的选定表面的实际位移与所需位移之间的差异最小,这将在相同几何形状但由均质材料组成的对象中产生实质上不同的位移。弹性是通过带有线搜索的迭代梯度下降法来计算的。该算法旨在用于计算机辅助设计环境中,以促进由可能在三个维度上变化的异质材料分布组成的对象的开发,从而使诸如成本或密度之类的因素最小化,以实现零件材料费用或重量的减少,或者具有特定几何形状的特定性能。增材制造工艺(如3D打印)的新兴领域使创建此类对象成为可能。虽然生物学过程经常会同时优化几何形状和材料组成,但大多数传统工程设计优化都将重点放在几何而不是材料配置上。材料通常是均匀的或复合的,并分配给整个零件或组件。这项工作演示了一种新颖的计算方法,用于优化特定零件的此类材料配置。随着增材制造领域的进一步成熟和扩展,这种定制的高性能零件制造预计将变得越来越普遍,同时执行几何和材料配置优化的统一工具对于充分实现该制造方法的优势将变得越来越重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号