首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >The Design and Model Simulation of a Micro Gas Turbine Combustor Supplied with Methane/Syngas Fuels
【24h】

The Design and Model Simulation of a Micro Gas Turbine Combustor Supplied with Methane/Syngas Fuels

机译:装有甲烷/合成气燃料的微型燃气轮机燃烧室的设计和模型仿真

获取原文

摘要

The design and model simulation of a can combustor has been made for future syngas (mainly H_2/CO mixtures) combustion application in a micro gas turbine. In previous modeling studies with methane as the fuel, the analysis indicated the design of the combustor is quite satisfactory for the 60-kW gas turbine; however, the cooling may be the primary concerns as several hot spots were found at the combustor exit. When the combustor is fueled with methane/syngas mixtures, the flames would be pushed to the sides of the combustor with the same fuel injection strategy. In order to sustain the power load, the exit temperature became too high for the turbine blades, which deteriorated the cooling issue of the compact combustor. Therefore, the designs of the fuel injection are modified, and film cooling is employed. Consequently, the simulation of the modified combustor is conducted by the commercial CFD software Fluent. The computational model consists of the three-dimensional, compressible k-ε model for turbulent flows and PPDF (Presumed Probability Density Function) model for combustion process between methane/syngas and air invoking a laminar flamelet assumption. The flamelet is generated by detailed chemical kinetics from GRI 3.0. Thermal and prompt NO_x mechanisms are adopted to predict the NO formation. At the designed operation conditions, the modeling results show that the high temperature flames are stabilized in the center of the primary zone where a recirculation zone is generated for methane combustion. The average exit temperature of the modified can combustor is 1293 K, which is close to the target temperature of 1200 K. Besides, the exit temperatures exhibit a more uniform distribution by coupling film cooling, resulting in a low pattern factor of 0.22. The NO emission is also low with the increased number of the dilution holes. Comparing to the results for the previous combustor, where the chemical equilibrium was assumed for the combustion process, the flame temperatures are predicted lower with laminar flamelet model. The combination of laminar flamelet and detailed chemistry produced more reasonable simulation results. When methane/syngas fuels are applied, the high temperature flames could also be stabilized in the core region of the primary zone by radially injecting the fuel inward instead of outward through the multiple fuel injectors. The cooling issues are also resolved through altering the air holes and the film cooling. The combustion characteristics were then investigated and discussed for future application of methane/syngas fuels in the micro gas turbine. Although further experimental testing is still needed to employ the syngas fuels for the micro gas turbine, the model simulation paves an important step to understand the combustion performance and the satisfactory design of the combustor.
机译:罐式燃烧器的设计和模型模拟已经为微型燃气轮机中未来的合成气(主要是H_2 / CO混合物)燃烧应用进行了设计。在以前的以甲烷为燃料的模型研究中,分析表明燃烧室的设计对于60 kW的燃气轮机非常令人满意。但是,冷却可能是主要问题,因为在燃烧室出口处发现了几个热点。当燃烧室以甲烷/合成气混合物作为燃料时,火焰将以相同的燃料喷射策略被推向燃烧室的侧面。为了维持动力负载,出口温度对于涡轮机叶片而言变得太高,这恶化了紧凑型燃烧器的冷却问题。因此,修改了燃料喷射的设计,并采用了薄膜冷却。因此,修改后的燃烧室的仿真是通过商用CFD软件Fluent进行的。该计算模型包括用于湍流的三维可压缩k-ε模型和用于甲烷/合成气与空气之间的燃烧过程(调用层流小火焰假设)的PPDF(假定概率密度函数)模型。小火焰是通过GRI 3.0的详细化学动力学生成的。采用热和即时NO_x机制来预测NO的形成。在设计的运行条件下,建模结果表明,高温火焰稳定在主要区域的中心,在该区域产生了用于甲烷燃烧的再循环区域。改性罐燃烧室的平均出口温度为1293 K,接近目标温度1200K。此外,出口温度通过耦合膜冷却显示出更均匀的分布,从而导致0.22的低图案系数。随着稀释孔数量的增加,NO排放也很低。与以前的燃烧器的结果(在燃烧过程中假设化学平衡)相比,使用层状小火焰模型预测的火焰温度更低。层流小火焰和详细化学反应的结合产生了更合理的模拟结果。当使用甲烷/合成气燃料时,也可以通过向内而不是通过多个燃料喷射器向外径向喷射燃料,来在主要区域的核心区域中稳定高温火焰。冷却问题也可以通过更改气孔和薄膜冷却得到解决。然后研究燃烧特性并讨论甲烷/合成气燃料在微型燃气轮机中的未来应用。尽管仍需要对微型燃气轮机使用合成气燃料进行进一步的实验测试,但是模型模拟为理解燃烧器的燃烧性能和令人满意的设计铺平了重要的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号