首页> 外文会议>ASME Internal Combustion Engine Division technical conference >A COMPUTATIONAL INVESTIGATION OF FUEL CHEMICAL AND PHYSICAL PROPERTIES EFFECTS ON GASOLINE COMPRESSION IGNITION IN A HEAVY-DUTY DIESEL ENGINE
【24h】

A COMPUTATIONAL INVESTIGATION OF FUEL CHEMICAL AND PHYSICAL PROPERTIES EFFECTS ON GASOLINE COMPRESSION IGNITION IN A HEAVY-DUTY DIESEL ENGINE

机译:重型柴油机中燃料化学和物理性质对汽油压缩点火的计算研究

获取原文

摘要

Gasoline compression ignition (GCI) offers the potential to reduce criteria pollutants while achieving high fuel efficiency in heavy-duty diesel engines. This study aims to investigate the fuel chemical and physical properties effects on GCI operation in a heavy-duty diesel engine through closed-cycle, 3-D computational fluid dynamics (CFD) combustion simulations, investigating both mixing-controlled combustion (MCC) at 18.9 compression ratio (CR) and partially premixed combustion (PPC)at 17.3 CR. For this work, fuel chemical properties were studied in terms of the primary reference fuel (PRF) number (0-91) and the octane sensitivity (0-6) while using a fixed fuel physical surrogate. For the fuel physical properties effects investigation, PRF70 was used as the gas-phase chemical surrogate. Six physical properties were individually perturbed, varying from the gasoline to the diesel range. Combustion simulations were carried out at 1375 RPM and 10 bar brake mean effective pressure (BMEP). Reducing fuel reactivity (or increasing PRF number) was found to influence ignition delay time (IDT) more significantly for PPC than for MCC due to the lower charge temperature and higher EGR rate involved in the PPC mode. 0-D IDT calculations suggested that the fuel reactivity impact on IDT diminished with an increase in temperature. Moreover, higher reactivity gasolines exhibited stronger negative coefficient (NTC) behavior and their IDTs showed less sensitivity to temperature change. When exploring the octane sensitivity effect, ignition was found to occur in temperature conditions more relevant to the MON test. Therefore, increasing octane sensitivity (reducing MON) led to higher reactivity and shorter ignition delay. Under both MCC (Trvc: 385K ) and PPC (W 353K), all six physical properties showed little meaningful impact on global combustion behavior, NOx and fuel efficiency. Among the physical properties investigated, only density showed a notable effect on soot emissions. Increasing density resulted in higher soot due to deteriorated air entrainment into the spray and the slower fuel-air mixing process. When further reducing the IVC temperature from 353K to 303K under PPC, the spray vaporization and fuel-air mixing were markedly slowed. Consequently, increasing the liquid fuel density created a more pronounced presence of fuel-rich and higher reactivity regions, thereby leading to an earlier onset of hot ignition and higher soot.
机译:汽油压缩点火(GCI)提供了减少标准污染物的潜力,同时在重型柴油发动机中实现了高燃油效率。这项研究旨在通过闭环3-D计算流体力学(CFD)燃烧模拟研究燃料化学和物理特性对重型柴油发动机GCI运行的影响,并研究18.9时的混合控制燃烧(MCC)压缩比(CR)和部分预混燃烧(PPC)为17.3 CR。对于这项工作,在使用固定燃料物理替代品的情况下,根据主要参考燃料(PRF)编号(0-91)和辛烷值敏感性(0-6)研究了燃料化学性质。为了研究燃料的物理性能,将PRF70用作气相化学替代物。从汽油到柴油,六种物理特性分别受到干扰。在1375 RPM和10 bar制动平均有效压力(BMEP)下进行燃烧模拟。发现降低燃料反应性(或增加PRF数量)对PPC的影响比MCC对点火延迟时间(IDT)的影响更大,这是因为PPC模式涉及的充电温度较低和EGR率较高。 0-D IDT计算表明,燃料反应性对IDT的影响随温度升高而减小。此外,较高反应性的汽油表现出较强的负系数(NTC)行为,而其IDT对温度变化的敏感性较低。在探索辛烷值敏感性效应时,发现在与MON测试更相关的温度条件下会发生着火。因此,提高辛烷值灵敏度(降低MON)可导致更高的反应性和更短的点火延迟。在MCC(Trvc:385K)和PPC(W 353K)下,所有六个物理特性对整体燃烧行为,NOx和燃料效率几乎没有有意义的影响。在所研究的物理特性中,只有密度显示出对烟尘排放的显着影响。密度的增加会导致烟灰增加,这是由于空气夹带到喷雾中的情况变差以及燃料-空气混合过程变慢。在PPC下将IVC温度从353K进一步降低到303K时,喷雾气化和燃料-空气混合明显减慢。因此,增加液体燃料密度产生了更明显的富含燃料的区域和更高反应性的区域,从而导致更早地出现热点火和更高的烟灰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号