首页> 外文会议>IEEE Aerospace Conference >Overview of the Mars 2020 parachute risk reduction activity
【24h】

Overview of the Mars 2020 parachute risk reduction activity

机译:火星2020降落伞风险降低活动概述

获取原文

摘要

In 2012, the Mars Science Laboratory (MSL) landed safely on the surface of Mars using a supersonic Disk-Gap-Band (DGB) parachute, which was structurally qualified for flight via a subsonic wind tunnel test program. Results of the Low-Density Supersonic Decelerators (LDSD) program have called into question the methodology and principles that form the foundation of the MSL subsonic test program. LDSD discovered that quasi-static subsonic proof loading a parachute via ground testing may not provide canopy stresses that sufficiently bound the stresses experienced during a rapid supersonic inflation at Mars. Additionally, deeper scrutiny of the materials and structural margins present in previously successful supersonic DGBs indicated that the MSL parachute flew with lowest margins of any previous parachute. These factors have increased the perceived risk of reusing a heritage MSL DGB parachute design with a subsonic test program for Mars 2020. To reduce this risk, a series of risk reduction steps were initiated starting in 2016. First, two parachute assemblies have been pursued in parallel: a Build-to-Print (BTP) MSL parachute, designed and manufactured by Pioneer Aerospace Corporation, which maintains the heritage of the successful MSL parachute, and a strengthened parachute, designed and manufactured by Airborne Systems North America, which uses higher strength materials throughout the parachute assembly but maintains the same overall size as the MSL parachute. Second, each parachute system was tested in a subsonic wind tunnel to examine the canopies in their fully inflated state and assess the workmanship of each canopy. Finally, full-scale parachutes from each vendor will experience at least one supersonic inflation at Mars-relevant Mach numbers and atmospheric densities at Earth via a supersonic sounding rocket test campaign. This paper presents high-level details regarding the risk reduction strategy, the two candidate parachute configurations, the ground test program, and the supersonic flight test program, and brief results from each of the test programs.
机译:2012年,火星科学实验室(MSL)使用超音速磁盘间隙带(DGB)降落伞安全降落在火星表面,该降落伞在结构上已通过亚音速风洞测试计划飞行。低密度超音速减速器(LDSD)程序的结果使人们质疑构成MSL亚音速测试程序基础的方法和原理。 LDSD发现,通过地面测试加载降落伞的准静态亚音速证明可能无法提供足以约束火星在超音速快速膨胀过程中经受的应力的冠层应力。此外,对以前成功的超音速DGB中存在的材料和结构边缘的更深入的研究表明,MSL降落伞以任何先前降落伞的最低边缘飞行。这些因素增加了重新使用传统MSL DGB降落伞设计和2020年火星亚音速测试程序的风险。为了降低这种风险,从2016年开始采取了一系列降低风险的步骤。首先,在2002年开始采用两个降落伞组件并行:由先锋航空航天公司设计和制造的“打印到制造”(BTP)MSL降落伞,它保持了成功的MSL降落伞的传统,而由Airborne Systems North America设计和制造的增强型降落伞使用了更高的强度降落伞组件中使用的所有材料,但保持与MSL降落伞相同的整体尺寸。其次,每个降落伞系统都在亚音速风洞中进行了测试,以检查处于完全充气状态的顶篷并评估每个顶篷的工艺。最后,通过超音速探空火箭试验,每个厂商的全尺寸降落伞将在与火星有关的马赫数和地球大气密度下经历至少一次超音速膨胀。本文介绍了有关降低风险的策略,两个候选降落伞配置,地面测试程序和超音速飞行测试程序的高级详细信息,以及每个测试程序的简要结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号