首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference;AIAA SciTech Forum >Distributed Electric Propulsion Effects on Traditional Aircraft Through Multidisciplinary Optimization
【24h】

Distributed Electric Propulsion Effects on Traditional Aircraft Through Multidisciplinary Optimization

机译:通过多学科优化对传统飞机的分布式电力推进效果

获取原文

摘要

Electric aircraft face a steep tradeoff between the demand for runway performance and range. While fuel based propulsion technologies typically increase in specific power with increasing size, electric propulsion is typically much more scalable. This system scalability enables alternative designs including distributed propulsion, optionally powered propulsion units, and vectored thrust, which can all contribute to better runway performance and range. In this paper, we explore how continuously powered distributed propulsion can reduce takeoff distance while still satisfying range constraints. We use a combination of a blade element momentum method, a vortex lattice method, experimental data, and nonlinear optimization techniques to model and explore the design space. We have found that for this conceptual design study, a fully blown wing with propellers at the optimal diameter for the load (8 propellers for a 300 km range constraint) can reduce the takeoff distance by over 80% when compared to the optimal 2 propeller case using the same models. There is over a 2x increase in the wing lift coefficient which leads to a 36% reduction in liftoff speed. Also, the optimal fully blown case produced 2.9 more thrust during takeoff with only an 11% increase in total aircraft mass. Using propeller tip speed as a surrogate for noise, we found that the propeller tip speed decreased takeoff performance in an exponential manner: the tip speed could be decreased from Mach 0.8 to Mach 0.5 with only a 2x increase in takeoff rolling distance while decreasing the constraint to Mach 0.3 produced an 8x increase.
机译:电动飞机面临着对跑道性能和航程的需求之间的巨大权衡。尽管基于燃料的推进技术通常会随着尺寸的增加而增加比功率,但电力推进通常具有更大的可扩展性。这种系统的可扩展性使替代设计成为可能,包括分布式推进,可选的动力推进单元和矢量推力,这些都可以为更好的跑道性能和航程做出贡献。在本文中,我们探索了连续动力分布式推进如何在仍满足航程约束的同时减小起飞距离。我们结合使用了叶片单元动量法,涡流格子法,实验数据和非线性优化技术来对设计空间进行建模和探索。我们已经发现,对于此概念设计研究,与最佳2螺旋桨案例相比,在负荷的最佳直径下使用螺旋桨的完全吹制机翼(对于300 km范围约束而言为8螺旋桨)可以将起飞距离减少80%以上使用相同的模型。机翼升力系数提高了2倍以上,导致升空速度降低了36%。同样,最佳的全炸壳在起飞过程中产生了2.9倍的推力,飞机总质量仅增加了11%。使用螺旋桨叶尖速度作为噪声的替代品,我们发现螺旋桨叶尖速度以指数方式降低了起飞性能:叶尖速度可以从0.8马赫降低到0.5马赫,而起飞滚动距离仅增加2倍,同时降低了约束达到0.3马赫,则增长了8倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号