首页> 外文会议>Corrosion conference and expo >Role of Major and Minor Alloying Elements in Corrosion-Resistant Alloys to Localized Corrosion Inhibition: A Review
【24h】

Role of Major and Minor Alloying Elements in Corrosion-Resistant Alloys to Localized Corrosion Inhibition: A Review

机译:主要和次要合金元素在耐腐蚀合金中对局部腐蚀抑制的作用:综述

获取原文

摘要

Among the corrosion-resistant alloys (CRA), Nickel (Ni)-alloys having an optimum concentration of Cr, Mo and W, are widely used for applications which require high resistance to uniform corrosion, localized corrosion and stress corrosion cracking. However, in very aggressive conditions, i.e., in the presence of high concentration of chlorides, oxidizing environment and high temperatures, these materials can suffer from localized corrosion. There are various quantitative methods used to investigate the localized corrosion resistance performance of CRA, like pitting resistance equivalent (PRE), weight loss technique (ASTM G-48) and electrochemical techniques (ASTM G-61, Potentiostatic, Galvanostatic, Potentiodynamic-Galvanostatic-Potentiodynamic etc.). Although, these techniques are extremely useful to rank the materials localized corrosion resistance performance in a particular environment but do not suggest an exact mechanism for the role of alloying elements to materials inhibition to local attack. On contrary, surface characterization techniques, like optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), profilometry, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), secondary ion-mass spectroscopy (SIMS), which are utilized for the surface analyses, pre-and post-corrosion testing, assist in understanding the role of major and minor alloying elements but do not provide the characteristic data needed for the materials selection process. This study reviews the localized corrosion performance of corrosion-resistant alloys (like HASTELLOY®1 C-4 (N06455), C-276 (N10276), C-22® (N06022), C-2000® (N06200), C-22HS® (N07022), HYBRID-BC1® (N10362), G-35® (N06035) and HAYNES® 625 (N06625)) and high-temperatures alloys (like HASTELLOY® X (N06002), HAYNES® HR-160® (N12160), HAYNES® 230® (N06230), HAYNES® 282® (N07208) and HAYNES® 718 (N07718)) containing varying amount of Cr, Mo and W, using both quantitative and surface characterization techniques. The characteristic potential (breakdown potential, repassivation potential) and temperatures (critical pitting temperature, critical crevice temperature, protection temperature) were obtained from the weight loss and electrochemical techniques. The corroded specimens were characterized by surface characterization tools for a better understanding of the role of alloying elements on inhibition of localized corrosion.
机译:在耐腐蚀合金(CRA)中,具有最佳浓度的Cr,Mo和W的镍(Ni)合金广泛用于要求高耐均匀腐蚀,局部腐蚀和应力腐蚀开裂的应用。但是,在非常苛刻的条件下,即在存在高浓度氯化物,氧化环境和高温的情况下,这些材料可能遭受局部腐蚀。有多种定量方法可用于研究CRA的局部耐腐蚀性能,例如抗点蚀当量(PRE),失重技术(ASTM G-48)和电化学技术(ASTM G-61,恒电,恒电,恒电-恒电-电位动力学等)。虽然,这些技术对于在特定环境中对材料的局部耐腐蚀性能进行分级非常有用,但并未提出合金元素对材料抑制局部腐蚀的作用的确切机制。相反,表面表征技术,如光学显微镜(OM),扫描电子显微镜(SEM),能量色散X射线(EDX),轮廓图,俄歇电子能谱(AES),X射线光电子能谱(XPS),二次离子-质谱(SIMS)用于表面分析,腐蚀前和腐蚀后测试,有助于了解主要和次要合金元素的作用,但未提供材料选择过程所需的特征数据。这项研究回顾了耐腐蚀合金的局部腐蚀性能(例如HASTELLOY®1 C-4(N06455),C-276(N10276),C-22®(N06022),C-2000®(N06200),C-22HS ®(N07022),HYBRID-BC1®(N10362),G-35®(N06035)和HAYNES®625(N06625))和高温合金(例如HASTELLOY®X(N06002),HAYNES®HR-160®(N12160) ),HAYNES®230®(N06230),HAYNES®282®(N07208)和HAYNES®718(N07718))使用定量和表面表征技术,均含有不同含量的Cr,Mo和W.通过重量损失和电化学技术获得特征电位(击穿电位,再钝化电位)和温度(临界点蚀温度,临界缝隙温度,保护温度)。用表面表征工具对腐蚀的样品进行了表征,以更好地了解合金元素对抑制局部腐蚀的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号