首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Numerical Simulation of Flow Distribution in a Realistic Gas Turbine Combustor
【24h】

Numerical Simulation of Flow Distribution in a Realistic Gas Turbine Combustor

机译:现实的燃气轮机燃烧室中流动分布的数值模拟

获取原文

摘要

Numerical simulations are reported in this paper studying the flow-split through various parts of a realistic gas turbine combustor inclusive of swirler passages, dilution jets, and all effusion/slot cooling holes. Numerical simulations including hardware details such as liners with effusion holes are challenging due to: (a) highly complex meshing of a large number of tiny effusion holes, and (b) requirement for an optimized robust mesh for a faster turnaround time to support engineering design calculations. With the goal to optimize turn-around time and accuracy, flow-split studies are carried out using steady-state Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simuladon (LES) approaches. A second-order spatial discretization scheme for momentum and the modified Pressure Implicit Splitting of Operators (PISO) scheme for pressure-velocity coupling are used. We start with a study for the determination of the mesh resolution required for a good estimation of the discharge coefficient (C_D) for a generic single hole, representative of an effusion hole, by varying: (ⅰ) the base mesh, (ⅱ) near wall cell size based on a non-dimensional near wall distance (Y~+) and (ⅲ) velocity gradients. In the next part, component wise flow-split simulations for the whole combustor with and without the effects of "dilution" jets and "effusion cooling" holes are compared against the experimental data. The results help establish the efficacy of steady-RANS and LES simulations in the determination of component-wise and total flow splits in the computational framework. The method used in the numerical calculation of component-wise flow splits involves closing all other passages except the one of interest while maintaining the pressure drop and is similar to the method used in the experiments. The total flow split, in turn, is estimated with all flow passages open, allowing for an interaction with different flows. This study is aimed at establishing a method of simulations for capturing the flow-splits and the velocity fields which in-turn are essential for predictive gas turbine simulations.
机译:本文报道了数值模拟,研究了通过旋流器通道,稀释喷射器和所有积液/槽冷却孔的现实燃气轮机燃烧器的各个部分的流动分流。诸如具有积液孔的衬垫等硬件细节的数值模拟由于:(a)大量微小的积液孔的高度复杂啮合,(b)优化的鲁棒网格要求更快的周转时间来支持工程设计。计算。通过实现优化转弯时间和准确性的目标,使用稳态雷诺平均Navier-Stokes(RANS)和大型涡旋Simuladon(LES)方法进行流分性研究。使用动量的二阶空间离散化方案和用于压力 - 速度耦合的运营商(PISO)方案的修改压力隐式分裂。我们首先通过改变的基础网孔来确定良好估计的良好估计所需的网格分辨率,从而代表积液孔,底部网,(Ⅱ)附近基于非尺寸靠近壁距(Y〜+)和(Ⅲ)速度梯度的壁电池尺寸。在下一部分中,将整个燃烧器的组件明智的流分流模拟与“稀释”喷射器和“积液冷却”孔的效果进行比较,并与实验数据进行比较。结果有助于建立稳定rans和les模拟在计算框架中的组分和总流动分裂中的效果。在组件 - 方向流动分裂的数值计算中使用的方法涉及除了您的一个感兴趣之外的所有其他通道,同时保持压力下降并且类似于实验中使用的方法。依次估计所有流动通道,允许与不同流的相互作用估计总流量。该研究旨在建立一种模拟方法,用于捕获流动分裂和反向对预测燃气涡轮机模拟至关重要的速度场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号