首页> 外文会议>ASME international mechanical engineering congress and exposition >A WHOLE OPERATION LIFE CYCLE MODEL OF GAS TURBINE BLADES UNDER MULTI-PHYSICS BASED ON VARIATION OF BLADE PROFILE PARAMETERS
【24h】

A WHOLE OPERATION LIFE CYCLE MODEL OF GAS TURBINE BLADES UNDER MULTI-PHYSICS BASED ON VARIATION OF BLADE PROFILE PARAMETERS

机译:基于叶片轮廓参数变化的多物理场燃气轮机全寿命周期模型

获取原文

摘要

For long-term operation, blades start to show some defects with increasing operating hours, such as fouling, erosion, corrosion, damage and tip clearance. As the basic unit components of gas turbines, the health conditions of blades directly affect the energy conversation efficiency and service life of the whole equipment. The process from first installation to scrap is blades' whole operation life cycle. It is an effective way to establish the whole operation life cycle model of blades for real-time monitoring, troubleshooting and prevention, so as to improve the management of equipment. The current research on the whole operation life cycle model is mostly limited to a single subject, such as thermal effects or stress effects. It lacks a profound analysis of this issue from the multi-disciplinary perspective. Meanwhile, the deterioration of blades influence on geometry variation of the blade surface is not taken into consideration in detail. Therefore, the current blade life model is not accurate enough to represent the actual situation. In this paper, the typical gas path deterioration is characterized by blade profile parameters, including the increment of the blade leading edge thickness, the increment of the blade trailing edge, and the change of the blade surface roughness in the whole operation life cycle model of blades. The influencing factors of aerodynamics and strain are synthetically characterized through the study of their multi-disciplinary influence mechanism. And the relationship between the corresponding influencing factors and the variation of blade profile parameters is established. Thus, the numerical simulation model under multi-physics is built to reveal its distribution and trends of the flow field and stress in the gas path. The result shows that it can protect the blades, ensure safe and stable operation, and reduce the deterioration rate.
机译:对于长期运行,叶片会随着运行时间的增加而出现一些缺陷,例如结垢,腐蚀,腐蚀,损坏和叶尖间隙。叶片的健康状况作为燃气轮机的基本部件,直接影响整个设备的能量转化效率和使用寿命。从首次安装到报废的整个过程就是叶片的整个使用寿命。建立刀片全生命周期模型,进行实时监控,故障排除和预防,是提高设备管理水平的有效途径。当前关于整个操作生命周期模型的研究大多仅限于单个主题,例如热效应或应力效应。从多学科的角度对这一问题缺乏深入的分析。同时,未详细考虑叶片的劣化对叶片表面的几何形状变化的影响。因此,当前的叶片寿命模型不够精确,无法代表实际情况。在本文中,典型的气路恶化是通过叶片轮廓参数来表征的,包括叶片前缘厚度的增加,叶片后缘的增加以及叶片整个工作生命周期模型中叶片表面粗糙度的变化。刀片。通过研究气动和应变的多学科影响机理,综合表征了气动和应变的影响因素。并建立了相应的影响因素与叶片轮廓参数变化之间的关系。因此,建立了多物理场下的数值模拟模型,以揭示其在气路中流场和应力的分布和趋势。结果表明,它可以保护叶片,确保安全稳定运行,并降低劣化率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号