首页> 外文会议>Conference on composites at Lake Louise >VAPOR PHASE INFILTRATION FOR TRANSFORMING POLYMERS INTO ORGANIC-INORGANIC HYBRID MATERIALS: PROCESSING SCIENCE, STRUCTURAL COMPLEXITY, AND EMERGING APPLICATIONS
【24h】

VAPOR PHASE INFILTRATION FOR TRANSFORMING POLYMERS INTO ORGANIC-INORGANIC HYBRID MATERIALS: PROCESSING SCIENCE, STRUCTURAL COMPLEXITY, AND EMERGING APPLICATIONS

机译:气相渗透法将聚合物转变为有机-无机杂化材料:加工科学,结构复杂性和新兴应用

获取原文

摘要

Vapor phase infiltration (VPI) exposes polymers to gaseous metalorganic molecules that sorb, diffuse, and become entrapped in the bulk polymer, transforming it into a complex organic-inorganic hybrid material. This process is pictured in Figure 1. While VPI's gaseous dosing sequences may appear similar to other vapor deposition techniques (e.g., atomic layer deposition) the set of atomic scale processes occurring during synthesis constitute a fundamentally different process that results in not just a simple coating on the polymer but rather a complete alteration of the polymer's bulk chemistry. This talk will discuss our development of a thermodynamic and kinetics framework for understanding the VPI materials synthesis process and how different mechanisms of entrapment can create either three-dimensionally, covalently bonded organic-inorganic networks or, perhaps more interesting, segregated organic and inorganic networks that interpenetrate at the atomic scale but do not form primary bonds with each other. These unusual structures challenge our definition of concepts like "phases" and "interfaces" that we typically use to describe the physiochemical structure of most materials. In this talk, we will ask the audience to consider if the language we use to classify hybrid materials and nanocomposites is appropriate and sufficient. This atomic scale intermixing of organic and inorganic constituents generates new physiochemical properties in the material, including a resistance to dissolution or swelling in organic solvents. In certain cases, it is sufficient to infiltrate just a few microns into the subsurface of a polymer to protect the entire polymer (See Figure 2). In other cases, like membranes, we transform the entire material so that it can operate in otherwise "extreme" conditions with little change in performance. Interestingly, the swelling and dissolution behaviors of hybrids with bound and unbound organic-inorganic constituents can vary and appear to depend more upon this bonding environment than the inorganic loading fraction. Perhaps most importantly, many of these modifications can be accomplished with a single exposure to the metalorganic vapors, implying the process can be readily scaled for manufacturing.
机译:气相渗透(VPI)使聚合物暴露于气态金属有机分子,该分子吸收,扩散并截留在本体聚合物中,从而将其转变为复杂的有机-无机杂化材料。此过程如图1所示。虽然VPI的气体定量添加顺序可能看起来与其他气相沉积技术(例如原子层沉积)相似,但在合成过程中发生的一系列原子尺度过程构成了根本不同的过程,这不仅导致了简单的涂覆而是完全改变了聚合物的本体化学性质。本讲座将讨论我们开发热力学和动力学框架的过程,以了解VPI材料的合成过程,以及不同的截留机制如何形成三维共价键合的有机-无机网络,或者也许更有趣的是,分离的有机和无机网络在原子尺度上互穿,但彼此之间不形成主键。这些不寻常的结构挑战了我们对“相”和“界面”等概念的定义,这些概念通常用于描述大多数材料的物理化学结构。在本次演讲中,我们将请听众考虑我们用来对混合材料和纳米复合材料进行分类的语言是否适当和充分。有机和无机成分的这种原子级混合会在材料中产生新的物理化学特性,包括对有机溶剂中溶解或溶胀的抵抗力。在某些情况下,仅渗透几微米到聚合物的亚表面就足以保护整个聚合物(参见图2)。在其他情况下,例如膜,我们会转换整个材料,以便它可以在其他“极端”条件下运行,而性能几乎不变。有趣的是,具有键合和未键合的有机-无机成分的杂化物的溶胀和溶解行为可能会发生变化,并且似乎比无机负载分数更依赖于这种键合环境。也许最重要的是,这些修饰中的许多修饰都可以通过一次暴露于金属有机蒸气来完成,这意味着该工艺可以很容易地按比例放大以进行制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号