首页> 外文会议>IAEE International Conference;International Association for Energy Economics >DECARBONIZATION OF THE ELECTRICITY SECTOR IN SOUTH EAST EUROPE
【24h】

DECARBONIZATION OF THE ELECTRICITY SECTOR IN SOUTH EAST EUROPE

机译:东南欧的电力去碳化

获取原文

摘要

OverviewSouth East Europe is a diverse region with respect to energy policy and legislation, comprising a mix of EU memberstates, candidate and potential candidate countries. Despite this diversity, shared challenges and opportunities exist.The electricity network of the South East Europe region is highly connected, energy policies more harmonised andelectricity markets better integrated – as a result of the EU accession process, the Energy Community Treaty and,more recently, the Energy Union initiative supporting a regional perspective on policy development. This reportemphasises the regional dimension; it is complemented by national reports available on the South East EuropeEnergy Roadmap (SEERMAP) website (http://seermap.rekk.hu) [1].The SEERMAP project uses a model-based assessment of different long term electricity investment strategies forAlbania, Bosnia and Herzegovina, Bulgaria, Greece, Kosovo*, former Yugoslav Republic of Macedonia,Montenegro, Romania and Serbia. The SEERMAP region will need to replace more than 30% of its current fossilfuel generation capacity by the end of 2030, and more than 95% by 2050. This provides both a challenge to ensure apolicy framework which will incentivise new investment, and an opportunity to shape the electricity sector over thelong term in-line with a broader energy transition strategy unconstrained by the current generation portfolio.The aimof the analysis is to show the challenges and opportunities ahead and the trade-offs between different policy goals.The project can also contribute to a better understanding of the benefits that regional cooperation can provide for allinvolved countries. Although ultimately energy policy decisions will need to be taken by national policy makers,these decisions must recognise the interdependence of investment and regulatory decisions of neighbouringcountries. Rather than outline specific policy advise in such a complex and important topic, our aim is to support aninformed dialogue at the national and regional level so that policymakers can work together to find optimal solutions.MethodsFive models incorporating the electricity and gas markets, the transmission network and macro-economic systemwere used to assess the impact of three core scenarios. The European Electricity Market Model (EEMM) and theGreen-X model together assess the impact of different scenario assumptions on power generation investment anddispatch decisions. The EEMM is a partial equilibrium microeconomic model. It assumes that the electricity marketis fully liberalised and perfectly competitive. In the model, electricity generation as well as cross border capacitiesare allocated on a market basis without gaming or withholding capacity: the cheapest available generation will beused, and if imports are cheaper than producing electricity domestically demand will be satisfied with imports. TheGreen-X model complements the EEMM with a more detailed view of renewable electricity potential, policies andcapacities. The model includes a detailed and harmonised methodology for calculating long-term renewable energypotential for each technology using GIS-based information, technology characteristics, as well as land use and powergrid constraints. The three core scenarios can be described as follows:1. The ‘no target’ scenario reflects the implementation of existing energy policy (including implementation ofrenewable energy targets for 2020 and construction of all power plants included in official planningdocuments) combined with a CO_2 price (which is only envisaged from 2030 onwards for non EU memberstates). The scenario does not include an explicit 2050 CO_2 target or a renewables target for the electricitysectors of the EU member states or countries in the Western Balkans;2. The ‘decarbonisation’ scenario reflects a long-term strategy to significantly reduce CO_2 emissions, in linewith EU emission reduction goals for the electricity sector as a whole by 2050, driven by the CO_2 price andstrong, consistent RES support;3. The ‘delayed’ scenario involves an initial implementation of current national investment plans (business-asusualpolicies) followed by a change in policy direction from 2035 onwards, resulting in the realisation ofthe same emission reduction target in 2050 as the ‘decarbonisation’ scenario. This is driven by the CO_2price and increased RES support from 2035 onwards.The same emission reduction target of 94% was set for the SEERMAP region in the ‘delayed’ and ‘decarbonisation’scenarios. This implies that the emission reductions will be higher in some countries and lower in others, dependingon where emissions can be reduced most cost-efficiently. Due to the divergent generation capacities, the scenariosresult in different generation mixes and corresponding levels of CO_2 emissions, but also in different investmentneeds, wholesale price levels, patterns of trade, and macroeconomic impacts.ResultsThe main investment challenge in the SEERMAP region is replacing currently installed lignite and oil basedcapacities, of which more than 30% is expected to be decommissioned by the end of 2030 and more than 95% by2050. The model results show that the least cost capacity options under the assumed costs and prices are renewables(in particular wind, hydro and solar) in emission reduction target scenarios and a mix of natural gas and renewablesin the ‘no target’ scenario.The capacity mix changes significantly in all three core scenarios, with a shift away from fossil based towardsrenewable capacity. The changes in the capacity mix are driven primarily by increasing carbon prices and decreasingrenewable technology costs. Oil capacity disappears after 2035 in all scenarios, while coal and lignite based capacitydrops from an initial 24.2 GW in 2016 to 6.6 GW by 2050 in the ‘no target’ and ‘delayed’ scenarios, and to 1.2 GWin the ‘decarbonisation’ scenario. By 2050, most of the coal capacity can be found in Bosnia and Herzegovina,Kosovo* and Serbia in both the ‘no target’ and ‘delayed’ scenarios according to model results, with 2000, 1100 and1400 MW capacity respectively. In the ‘decarbonisation’ scenario the entire coal capacity in the SEERMAP regionis based in 3 countries: Bosnia and Herzegovina, Bulgaria and Greece.Renewable capacity becomes increasingly important in all three scenarios. Investment in new wind capacities issignificant, tripling in the ‘no target’ scenario from 6 GW in 2016 to around 20 GW in 2050. In the two scenarioswith a decarbonisation target for 2050 the growth is even more significant, with wind capacity reaching 41 GW and36 GW in the 2050 ‘delayed’ and ‘decarbonisation’ scenarios respectively. Relative wind capacity increase isespecially high in the candidate and potential candidate countries (Albania, Bosnia and Herzegovina, Kosovo*,former Yugoslav Republic of Macedonia, Montenegro and Serbia), where most countries has no or limitedexperience in operating wind farms.ConclusionsWhether or not countries in the region pursue an active policy to support renewable electricity generation, asignificant replacement of fossil fuel based generation capacity will take place; coal and lignite based generationphase out gradually under all scenarios due to the increasing carbon price and oil disappears from the electricity mixby 2030. Decarbonisation will require continued RES support during the entire period. However, the need forsupport decreases as the electricity wholesale price increases and thereby incentivises significant RES investmenteven without support. The sensitivity analysis reveals that regional RES targets are significantly more cost-effectivethan national targets, to the point that the required RES support in a national target scenario is twice the level of thesupport needed in a regional support scenario. A regional system will also encourage harmonisation of other supportelements such as permitting, grid connection rules, financing, taxation, etc. Last but not least, as revenues from theauctioning of EU ETS allowances are sufficient to cover RES support for most of the modelled period, a scheme tofinance RES support from these revenues can be devised in order to relieve the burden on consumers.
机译:概述 东南欧在能源政策和法规方面是一个多元化的地区,由欧盟成员国组成 州,候选国和潜在候选国。尽管存在这种多样性,但存在共同的挑战和机遇。 东南欧地区的电网高度连接,能源政策更加协调一致, 欧盟加入程序,《能源共同体条约》以及 最近,能源联盟倡议支持政策制定的区域观点。这份报告 强调区域范围;东南欧的国家报告对此进行了补充 能源路线图(SEERMAP)网站(http://seermap.rekk.hu)[1]。 SEERMAP项目使用基于模型的评估来评估不同的长期电力投资策略, 阿尔巴尼亚,波斯尼亚和黑塞哥维那,保加利亚,希腊,科索沃*,前南斯拉夫的马其顿共和国, 黑山,罗马尼亚和塞尔维亚。 SEERMAP地区将需要替换其目前超过30%的化石 到2030年底的燃料发电能力,到2050年将达到95%以上。 政策框架将激励新的投资,并有机会在全球范围内塑造电力部门 长期保持与当前发电产品组合不受限制的更广泛的能源转换策略相一致。 分析的目的在于显示未来的挑战和机遇,以及不同政策目标之间的取舍。 该项目还可以有助于更好地了解区域合作可以为所有人带来的利益 涉案国家。尽管最终能源政策决策将需要国家决策者做出决定, 这些决定必须认识到投资与邻国监管决定之间的相互依存关系 国家。我们的目标不是支持在如此复杂而重要的主题中概述具体的政策建议,而是旨在支持 在国家和地区级别进行知情对话,以便政策制定者可以共同努力寻找最佳解决方案。 方法 包含电力和天然气市场,输电网络和宏观经济体系的五种模式 用来评估三个核心方案的影响。欧洲电力市场模型(EEMM)和 Green-X模型共同评估了不同情景假设对发电投资和发电的影响。 调度决策。 EEMM是一种局部均衡的微观经济学模型。假设电力市场 完全自由化和完全竞争。在模型中,发电量和跨境容量 是根据市场分配的,没有游戏或预提能力:最便宜的一代将是 如果进口的价格比国内生产的价格便宜,那么进口就可以满足需求。这 Green-X模型以更详细的可再生电力潜力,政策和方法来补充EEMM 能力。该模型包括用于计算长期可再生能源的详细且统一的方法 使用基于GIS的信息,技术特征以及土地使用和电力的每种技术的潜力 网格约束。三种核心方案可以描述如下: 1.“无目标”情景反映了现有能源政策的实施情况(包括实施 2020年可再生能源目标以及官方计划中所有发电厂的建设 文件)和CO_2价格(仅从2030年开始才针对非欧盟成员) 状态)。该方案不包括明确的2050年CO_2目标或电力可再生目标 欧盟成员国或西巴尔干国家的部门; 2.“脱碳”情景反映了一项长期战略,即显着减少CO_2排放 受CO_2价格和 强大,一致的RES支持; 3.“延迟”方案涉及当前国家投资计划的初步实施(通常的业务) 政策),然后从2035年起改变政策方向,从而实现了 在2050年的减排目标与“脱碳”方案相同。这是由CO_2驱动的 价格和从2035年起增加的RES支持。 SEERMAP地区在“延迟”和“脱碳”中设定了相同的减排目标,即94% 场景。这意味着在某些国家,减排量将更高,而在另一些国家则更低,具体取决于 在哪里可以最经济有效地减少排放。由于发电能力的差异,方案 导致不同的发电组合和相应的CO_2排放水平,也导致不同的投资 需求,批发价格水平,贸易方式以及宏观经济影响。 结果 SEERMAP地区的主要投资挑战是替换当前已安装的褐煤和石油基 到2030年底,将有超过30%的设备退役,到2030年,将有95%以上的设备退役。 2050年。模型结果表明,在假定的成本和价格下,成本最低的能力选择是可再生能源 (尤其是风能,水能和太阳能)在减排目标方案中以及天然气和可再生能源的混合使用 在“无目标”的情况下。 在所有三个核心方案中,容量组合都发生了显着变化,从以化石为基础的生产转向了以化石为基础的生产。 可再生容量。产能组合的变化主要是由碳价上涨和价格下跌导致的 可再生技术成本。在所有情况下,石油产能在2035年之后都会消失,而煤炭和褐煤的产能会消失 在“无目标”和“延迟”的情况下,从2016年的24.2吉瓦下降到2050年的6.6吉瓦,并下降到1.2吉瓦 在“脱碳”场景中。到2050年,大部分煤炭产能都可以在波斯尼亚和黑塞哥维那找到, 根据模型结果,科索沃*和塞尔维亚处于“无目标”和“延迟”情景中,分别为2000、1100和 分别为1400兆瓦的容量。在“脱碳”情况下,SEERMAP地区的整个煤炭产能 总部位于3个国家/地区:波斯尼亚和黑塞哥维那,保加利亚和希腊。 在所有三种情况下,可再生容量变得越来越重要。在新的风力发电能力上的投资是 重要的是,在“无目标”的情况下,从2016年的6吉瓦增加到2050年的20吉瓦,增长了三倍。 到2050年实现脱碳目标时,其增长更为显着,风电容量达到41吉瓦, 在2050年“延迟”和“脱碳”情景中分别达到36吉瓦。相对风量增加为 在候选国家和潜在候选国家中尤其高(阿尔巴尼亚,波斯尼亚和黑塞哥维那,科索沃*, 前南斯拉夫的马其顿共和国,黑山和塞尔维亚),其中大多数国家没有或有有限的国家 有运营风电场的经验。 结论 无论该地区的国家/地区是否奉行支持可再生能源发电的积极政策, 基于化石燃料的发电能力将发生重大替代;煤和褐煤发电 在任何情况下,由于碳价上涨,石油将逐步淘汰,石油从电力结构中消失 到2030年。在整个时期,脱碳将需要持续的RES支持。但是,需要 随着电力批发价格的上涨,支持减少,从而增加了可观的可再生能源投资 即使没有支持。敏感性分析表明,区域RES目标明显更具成本效益 比国家目标要高,以至于在国家目标情景中所需的RES支持是国家目标水平的两倍 区域支持方案中需要的支持。区域系统还将鼓励协调其他支持 最后但并非最不重要的是,来自许可的收入,并网规则,融资,税收等要素。 拍卖欧盟排放交易体系(ETS)配额足以涵盖大部分建模时期的RES支持,这是一项旨在 可以设计从这些收入中获得的RES支持,以减轻消费者的负担。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号