首页> 外文会议>AIAA Aerospace Sciences Meeting >High-fidelity simulation of an ultrasonic standing-wave thermoacoustic engine with bulk viscosity effects
【24h】

High-fidelity simulation of an ultrasonic standing-wave thermoacoustic engine with bulk viscosity effects

机译:大量粘度效应超声波常设波热声发动机的高保真模拟

获取原文

摘要

We have carried out boundary-layer-resolved, unstructured fully-compressible Navier-Stokes simulations of an ultrasonic standing-wave thermoacoustic engine (TAE) model. The model is constructed as a quarter-wavelength engine, approximately 4 mm by 4 mm in size and operating at 25 kHz, and comprises a thermoacoustic stack and a coin-shaped cavity, a design inspired by Flitcroft and Symko (2013).~1 Thermal and viscous boundary layers (order of 10 μm) are resolved. Vibrational and rotational molecular relaxation are modeled with an effective bulk viscosity coefficient modifying the viscous stress tensor. The effective bulk viscosity coefficient is estimated from the difference between theoretical and semi-empirical attenuation curves. Contributions to the effective bulk viscosity coefficient can be identified as from vibrational and rotational molecular relaxation. The inclusion of the coefficient captures acoustic absorption from infrasonic (~10 Hz) to ultrasonic (~100 kHz) frequencies. The value of bulk viscosity depends on pressure, temperature, and frequency, as well as the relative humidity of the working fluid. Simulations of the TAE are carried out to the limit cycle, with growth rates and limit-cycle amplitudes varying non-monotonically with the magnitude of bulk viscosity, reaching a maximum for a relative humidity level of 5%. A corresponding linear model with minor losses was developed; the linear model overpredicts transient growth rate but gives an accurate estimate of limit cycle behavior. An improved understanding of thermoacoustic energy conversion in the ultrasonic regime based on a high-fidelity computational framework will help to further improve the power density advantages of small-scale thermoacoustic engines.
机译:我们已经进行了边界层分辨,非结构化完全可压缩的Navier-Stokes超声波驻波热声发动机(TAE)模型的模拟。该模型被构造为四分之一波长发动机,大约4毫米的尺寸为4毫米,并以25 kHz运行,包括热声堆叠和硬币形腔,这是由Flitcroft和Symko(2013)启发的设计。〜1热和粘性边界层(10μm的顺序)被解析。振动和旋转分子弛豫以有效的体积粘度系数改变粘性应力张量模拟。从理论和半经验衰减曲线之间的差异估计有效体积粘度系数。可以将对有效体积粘度系数的贡献鉴定为振动和旋转分子松弛。将系数捕获从infasonic(〜10 hz)的声学吸收到超声(〜100kHz)频率。体积粘度的值取决于压力,温度和频率,以及工作流体的相对湿度。在TAE的仿真进行到极限周期,随着生长速率和极限周期幅度变化的非单调体积粘度的大小,达到了5%的相对湿度水平的最大。开发了一种具有轻微损失的相应线性模型;线性模型超高了瞬态生长速率,但提供了对极限循环行为的准确估计。基于高保真计算框架的超声稳态化的热声能转换的改进了解将有助于进一步提高小型热声发动机的功率密度优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号