首页> 外文会议>AIAA Aerospace Sciences Meeting >Flow Separation Control over an NACA0015 Airfoil Using Nanosecond Pulsed Plasma Actuator
【24h】

Flow Separation Control over an NACA0015 Airfoil Using Nanosecond Pulsed Plasma Actuator

机译:使用纳米型脉冲等离子体致动器对NaCA0015翼型进行流动分离控制

获取原文

摘要

The present study is to investigate the flow separation control process over a NACA0015 airfoil model in wind tunnel under the actuation of the nanosecond dielectric barrier discharge (NS-DBD) pulsed plasma actuators, by detail force measurements and flow field survey with dynamic PIV techniques. The Reynolds numbers tested were from 268k up to 463k. The results have shown that the NS-DBD pulsed plasma has strong effects on the separated shear layer when the actuation location is close to the separation point, dependent on the angle of attack, Reynolds number, and the plasma actuation frequency. The first few plasma pulses have much stronger effects on the separated flow: each pulse generates a spanwise vortex, the separated shear layer is manipulated, and the separation flow is shifted from the leading-edge to downstream. It seems that the following plasma pulses have less effects on the delayed separated flow, but provide necessary sustainable actuation to maintain the controlled quasiperiodic flow state, characterized by a partially reattached flow with a train of moving vortices over suction surface. The separated flow is suppressed more with increasing the actuating frequency. The study also reveals that the NS-DBD acts as a trip device at the very narrow angles of attack just around the stall angle, where a bi-stable mode exists for the airfoil studied here which exhibits a leading-edge stall behavior. The lift increment is slightly higher at the actuating frequency around of F~+ = 0.5, due to a large and unsteady recirculating flow structure formed over the airfoil. While the drag is more dependent on the actuating frequency and angles of attack and no drag reduction is observed at high post-stall angles of attack.
机译:本研究是通过用动态PIV技术的细节测量和流场测量,在风隧道中在风隧道中的NACA0015翼型模型中研究流动分离控制过程。测试的雷诺数是268k,高达463K。结果表明,当致动位置接近分离点时,NS-DBD脉冲等离子体对分离的剪切层具有很强的影响,取决于攻击角,雷诺数和等离子体致动频率。前几个等离子体脉冲对分离的流动效应强得多:每个脉冲产生涡流沿翼展方向,分离的剪切层被操纵,分离流从前缘移动到下游。似乎以下等离子体脉冲对延迟分离的流动的影响较小,但是提供必要的可持续致动以维持受控的QuaSiodic流量状态,其特征在于,具有在吸入表面上移动涡流的局部重新连接的流动。随着增加的致动频率,更多地抑制分离的流程。该研究还揭示了NS-DBD作为跳闸角度的跳闸装置,其围绕失速角度,其中对于在此研究的翼型中存在双稳定模式,其呈现出领先的失速行为。由于在翼型上形成的大而不稳定的再循环流动结构,升降增量在F〜+ = 0.5周围的致动频率略高。虽然拖动更依赖于致动频率和攻击角度,但在高后的攻击角度下不观察到减少阻力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号