首页> 外文会议>EAEC European automotive congress >USE OF CO-SIMULATION AND MODEL ORDER REDUCTION TECHNIQUES IN AUTOMOTIVE INDUSTRY: APPLICATION TO AN ELECTRIC PARK BRAKE (EPB)
【24h】

USE OF CO-SIMULATION AND MODEL ORDER REDUCTION TECHNIQUES IN AUTOMOTIVE INDUSTRY: APPLICATION TO AN ELECTRIC PARK BRAKE (EPB)

机译:汽车工业共模和模型订单减少技术的使用:应用于电动园制动器(EPB)

获取原文

摘要

Today’s automotive systems generally combine components from many different physical domains (electrics, mechanics, hydraulics, thermodynamics, electronics, control...). On the one hand, when attention is focused on details of one single domain, specific techniques and tools especially suited for the simulation of each field are available and widely applied, e.g., FEM, CFD, etc. On the other hand, when integrated analysis at system level is required, a completely different approach is generally considered: dynamic simulation tools (e.g. Matlab Simulink~?) are used for modeling the vehicle systems or even the complete vehicle. Then, each domain is described using a reduced number of degrees of freedom, generally in the form of a lumped-parameter model. This way, the level of detail is given up in exchange of efficient calculations. However, there still exist cases in which the identification of model parameters becomes a very difficult task due to the presence of complex geometries or nonlinearities. In these cases, the cosimulation technique, consisting of the simultaneous execution of several simulation tools which exchange input/output information during the whole process, can be very beneficial. The cost for this extra potential is an increased computational effort that could make the system model inadequate for design optimization or software-in-the-loop simulations. To circumvent this problem, model order reduction techniques can be exploited to reduce the computational cost with a limited reduction of simulation accuracy. The work here presented concerns the development of a cosimulation framework for analyzing multidomain systems using Matlab Simulink? as core tool and third-party FEA-based simulators, as well as to the application of the proper orthogonal decomposition (POD) method to obtain reduced basis approximations for finite element models. A three-dimensional transient heat transfer finite element program has been linked to Matlab Simulink?, hence providing the capacity of simulating controlled electromechanical systems taking into account the strong coupling with the heat transfer processes in a complex geometry. Its application to control and system design in automotive industry is illustrated by the simulation of an Electric Park Brake system, in which the coupling between thermal, electrical and mechanical domains is essential for modeling and for the design of the control hardware. Using cosimulation and POD results in a straightforward method for including heat transfer through complex three-dimensional components in an accurate but computationally inexpensive way.
机译:今天的汽车电子系统通常结合部件从许多不同的物理域(电气,机械,液压,热力学,电子,控制...)。在一方面,当注意力集中在一个单域的细节,特别适用于各领域的模拟特定的技术和工具都可以和广泛应用,例如,FEM,CFD等。另一方面,综合分析时同时还存在着制度层面,一个完全不同的方法被普遍认为:动态仿真工具(?如MATLAB的〜)被用于模拟车辆系统甚至整车。然后,每个域使用的自由度的数目减少所描述的,通常在集总参数模型的形式。通过这种方式,详细程度是高效计算的交流放弃。但是,仍然存在着哪些模型参数的识别变得非常困难的任务,因为复杂的几何形状或非线性的存在情况。在这些情况下,协同仿真技术,由几个仿真工具,交换在整个过程中的输入/输出信息的同时执行的,可以是非常有益的。这个额外的潜在成本是增加的计算成本,可以使系统模型不足优化设计或软件在环仿真。为了解决这个问题,模型降阶技术可以被利用来减少与有限的减少仿真精度的计算成本。工作这里提出的关注分析使用MATLAB的多域系统中协同仿真框架的发展?作为核心工具和第三方基于FEA的仿真器,以及以适当的正交分解(POD)方法以获得用于有限元模型规约基近似值的应用。一种三维瞬时热传递有限元程序已被链接到MATLAB的?,因此提供模拟控制的机电系统考虑到强耦合与热传递过程中复杂几何形状的能力。其在汽车行业控制和系统设计的应用由电子驻车制动系统,其中,热,电和机械结构域之间的耦合是用于建模和用于控制硬件的设计必需的仿真示出。在包括通过复杂的三维部件以准确的计算,但廉价的方式传热的直接方法使用协同仿真和POD的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号