首页> 外文会议>Aunual Mary Kay O Connor Process Safety Center International Symposium >VERIFICATION AND VALIDATION OF CONSEQUENCE MODELS FOR ACCIDENTAL RELEASES OF TOXIC OR FLAMMABLE CHEMICALS TO THE ATMOSPHERE
【24h】

VERIFICATION AND VALIDATION OF CONSEQUENCE MODELS FOR ACCIDENTAL RELEASES OF TOXIC OR FLAMMABLE CHEMICALS TO THE ATMOSPHERE

机译:核查和验证后果模型,以便意外释放有毒或易燃化学品到大气中

获取原文

摘要

Consequence modelling software for accidental releases of flammable or toxic chemicals to the atmosphere includes discharge modelling, atmospheric dispersion modelling and evaluation of flammable and toxic effects: - First discharge calculations are carried out to set release characteristics for the hazardous chemical (including depressurisation to ambient). Scenarios which may be modelled includes releases from vessels (leaks or catastrophic ruptures), short pipes or long pipes. Releases considered include releases of sub-cooled liquid, superheated liquid or vapour; un-pressurised or pressurised releases; and continuous, time-varying or instantaneous releases. - Secondly dispersion calculations are carried out to determine the concentrations of the hazardous chemical when the cloud travels in the downwind direction. This includes modelling jet, heavy-gas and passive dispersion regimes, and transitions between them. In the case of a two-phase release, liquid droplet modelling is required to calculate liquid rainout, subsequent pool formation/spreading and re-evaporation from the pool back to the cloud. For heavy-gas releases, effects of crosswind and downwind gravity spreading are present, while for short duration and time-varying releases effects of along-wind diffusion are relevant. For pressurised instantaneous releases an initial phase of energetic expansion of the cloud occurs. Also, effects of indoor mixing (for indoor releases) and building wakes can be accounted for. - Finally, toxic or flammable calculations are carried out. For flammables, ignition may lead to rising fireballs (instantaneous releases), jet fires possibly impinging on the ground (pressurised flammable releases), pool fires (after rainout) and vapour cloud fires or explosions. Radiation calculations are carried out for fires, while overpressure calculations are carried out for explosions. For each event, the probability of death is determined using toxic or flammable probit functions. Testing of the software should ideally include for each consequence model "verification" that the code correctly solves the mathematical model (i.e. that the calculated variables are a correct solution of the equations), "validation" against experimental data to show how closely the mathematical model agrees with the experimental results, and a "sensitivity analysis" including a large number of input parameter variations to ensure overall robustness of the code, and to understand the effect of parameter variations on the model predictions. The current paper includes an overview on how the above verification and validation could be carried out for these consequence models. Reference is made to the literature for the availability of experimental data. Thus, an extensive experimental database has been developed including experimental data for validation for the above models and scenarios, where many different chemicals are considered (including water, LNG, propane, butane, ethylene, ammonia, CO_2, hydrogen, chlorine, HF etc.). The above verification and validation is illustrated by means of application to the latest consequence models in the hazard assessment package Phast and the risk analysis package Safeti.
机译:意外释放易燃或有毒化学品到大气中的建模软件包括放电建模,大气分散建模和易燃和毒性效果的评价: - 首先进行排放计算,以设定危险化学品的释放特性(包括对环境减压) 。可以进行建模的场景包括血管(泄漏或灾难性破裂),短管或长管道的释放。所考虑的释放包括亚冷液,过热液体或蒸气的释放;未加压或加压释放;和连续,时变或瞬时的释放。 - 当云行进在进行方向时,执行第二分散计算以确定危险化学品的浓度。这包括建模射流,重气和被动分散制度,以及它们之间的过渡。在双相释放的情况下,需要液滴建模来计算液体雨季,随后的池地层/传播和从池中的重新蒸发回到云端。对于重气释放,存在横顺和下风重力扩展的影响,而沿着风扩散的短持续时间和时变释放效果是相关的。对于加压瞬时释放云的初始阶段的初始阶段。此外,可以占室内混合(用于室内释放)和建筑奶粉的影响。 - 最后,进行有毒或易燃计算。对于燃棉,点火可能导致火球上升(瞬时版本),喷射火灾可能会撞击地面(加压易燃释放),池火(雨后后)和蒸汽云火灾或爆炸。对火灾进行辐射计算,同时对爆炸进行过度计算计算。对于每个事件,使用有毒或易燃探测功能确定死亡的概率。理想情况下,该软件的测试应该包括每个后果模型“验证”,即代码正确地解决了数学模型(即计算出的变量是等式的正确解决方案),对实验数据的“验证”来显示数学模型的密切相关同意实验结果,以及“敏感性分析”,包括大量输入参数变体,以确保代码的整体稳健性,并了解参数变化对模型预测的影响。本文概述了如何为这些后果模型进行上述验证和验证。参考文献进行实验数据的可用性。因此,已经开发了一个广泛的实验数据库,包括用于上述模型和场景的实验数据,其中考虑了许多不同的化学品(包括水,LNG,丙烷,丁烷,乙烯,氨,CO_2,氢气,氯,HF等。 )。以上验证和验证是通过申请到危险评估包Phast和风险分析包Safeti中的最新后果模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号