首页> 外文会议>Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments >Molecular Dynamics Modeling to Probe the Effect of Surface Functionalization on the Interfacial Adhesion and Shear Strength of Graphene/Epoxy Nanocomposites
【24h】

Molecular Dynamics Modeling to Probe the Effect of Surface Functionalization on the Interfacial Adhesion and Shear Strength of Graphene/Epoxy Nanocomposites

机译:表面功能化对石墨烯/环氧树脂纳米复合材料界面结合力和剪切强度影响的分子动力学模拟

获取原文

摘要

Persistent research effort has been devoted for decades in developing materials for the aerospace industry. Among the most crucial requirements in the new generation of aerospace, vehicles are optimizing their structural material stiffness, strength, and fuel-to-weight ratio. Accordingly, it has been established that lightweight polymer-based composite materials represent the ideal alternative to relatively heavy metallic structural alloys. Graphene/epoxy nanocomposites have been attracted much attention due to their exceptional mechanical properties. They have been used in fabricating carbon fiber/graphene/epoxy hybrid composites for improved properties relative to traditional carbon fiber/epoxy composites. This work addresses the interfacial interaction and adhesion in graphene/epoxy nanocomposite materials. This is necessary to investigate and maintain the material integrity at the nanoscale level by tailoring the molecular network structure. Molecular dynamics simulation with a reactive force field was used to quantify the interfacial interaction energy of the nanocomposite constituents, and graphene pull-out simulations were used to determine the interfacial shear strength. It has been shown that surface functionalization of graphene nanoplatelets can significantly increase their interfacial adhesion with the hosting epoxy matrix. The results show that there is a tremendous improvement in the functionalized graphene/epoxy interfacial interaction energy up to ~570%. Furthermore, surface functionalization of graphene nanoplatelets can improve the interfacial shear strength by ~750 times. This substantial improvement is from altering the noncovalent graphene-epoxy interfacial adhesion into strong covalent bonding utilizing the functional groups. Furthermore, the wrinkled and rough topology of functionalized graphene is found to improve the interlocking mechanism with the host matrix. These findings are important to the future of synthesizing next generation ultra-strength and lightweight polymer-based nanocomposite materials.
机译:几十年来,人们一直致力于为航空航天工业开发材料。在新一代航空航天最关键的要求中,飞行器正在优化其结构材料刚度、强度和燃料重量比。因此,已经确定,轻质聚合物基复合材料是相对较重的金属结构合金的理想替代品。石墨烯/环氧树脂纳米复合材料因其优异的力学性能而备受关注。它们已用于制备碳纤维/石墨烯/环氧杂化复合材料,以改善相对于传统碳纤维/环氧复合材料的性能。这项工作涉及石墨烯/环氧树脂纳米复合材料中的界面相互作用和粘附。这对于通过调整分子网络结构来研究和维持纳米级的材料完整性是必要的。采用反应力场的分子动力学模拟来量化纳米复合材料组分的界面相互作用能,并采用石墨烯拔出模拟来确定界面剪切强度。研究表明,石墨烯纳米片的表面功能化可以显著提高其与宿主环氧树脂基体的界面附着力。结果表明,功能化石墨烯/环氧树脂界面相互作用能显著提高,最高可达570%。此外,石墨烯纳米片的表面功能化可以将界面剪切强度提高约750倍。这种实质性的改进是通过利用官能团将非共价石墨烯-环氧树脂界面粘合改为强共价键。此外,功能化石墨烯的褶皱和粗糙拓扑结构被发现改善了与主体基体的联锁机制。这些发现对未来合成下一代超高强轻质聚合物基纳米复合材料具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号