首页> 外文会议>Oceans MTS/IEEE KONA >International study of larval dispersal and population connectivity at hydrothermal vents in the U.S. Marianas Trench Marine National Monument
【24h】

International study of larval dispersal and population connectivity at hydrothermal vents in the U.S. Marianas Trench Marine National Monument

机译:美国Marianas Stuch Marine National纪念碑中水热通风口幼虫通风口幼虫分散和人口连通性的国际研究

获取原文

摘要

Deep-sea, chemosynthesis-based ecosystems, such as hydrothermal vents, have received increasing attention in the past decade for protection of biodiversity and ecosystem function. For these spatially discrete habitats, dispersal of larvae in the plankton, settlement to the seafloor, and recruitment are processes that connect populations of benthic fauna. Knowledge of these processes is vital to understanding the resilience of vent ecosystems to disturbance or removal of sources of propagules. In particular, hydrothermal vents may be impacted by human activities including scientific research, eco-tourism, bioprospecting, and polymetallic sulfide mining. In 2009 the first Marine Protected Area (MPA) for vents in the U.S. EEZ was established as part of the Marianas Trench Marine National Monument (MTMNM). The vents in this region are located along the Mariana back-arc spreading center (BASC) and volcanic arc. In 2010 we conducted the first cruise dedicated to the study of vent-endemic fauna at the southern Mariana BASC. Cruise YK10-11 on R/V Yokosuka was one of several to this region as part of the Japanese multi-disciplinary program TAIGA (Transcrustal Advection and In-situ biogeochemical processes of Global sub-sea floor Aquifer). Larval, juvenile, and adult specimens of benthic invertebrates were collected at vents on-axis (Snail, Yamanaka) and off-axis (Archaean, Urashima, Pika) at ~3000-m depth. Our objectives included characterization of benthic communities, assessments of larval abundance and diversity, estimates of local-scale larval dispersal (on the order of 10 km), shipboard visualization of larval swimming behavior, and genetic diversity of populations at each vent site and genetic deviation between sites. Operations during the cruise included nine dives with the submersible Shinkai 6500 and seven deployments of subsurface moorings. These vents on the southern Mariana BASC appear to have similar macrofaunal community composition to the betterstudied BASC vents ~600-km to the north. Benthic collections included gastropods (e.g., Alviniconcha hessleri, Phymorhynchus aff. starmeri, Shinkailepas aff. kaikatensis), barnacles (Neoverruca brachylepadoformis), shrimp (Chorocaris aff. vandoverae), and polychaetes (e.g., Paralvinella hessleri); larvae were also collected near-bottom with a slurp sampler. To further assess larval abundance and diversity, we deployed large-volume plankton pumps near three of the vents, filtering five samples of ~40000 L each over a 63-μm mesh. Larvae were sorted morphologically, and selected morphotypes were identified via genetic bar-coding to phylotype and, when possible, to species. The local-scale larval dispersal study included a current meter recording near-bottom flow on-axis during the cruise. For the larval behavioral study, individual polychaete, barnacle, and gastropod larvae of several species were visualized in horizontally- and vertically-oriented chambers to measure swimming speeds at 1 atm. Local-scale population connectivity is being determined via molecular genetic analyses of mainly the benthic specimens. The population genetic study may be extended to the regional scale when linked to other analyses for specimens collected at vents elsewhere in the MTMNM, including those relatively nearby along the Mariana arc and further north on the BASC. Results of our study of larval dispersal and population connectivity at these deep-sea vents will be considered in the context of ecosystem management and protection in the MTMNM. Our work will also be considered in the broader context of connectivity of deep-sea, chemosynthesis-based ecosystems, through our involvement with the International Network for Scientific Investigations of Deep-Sea Ecosystems (INDEEP) working group on population connectivity.
机译:深海,化学合成的基础生态系统,如热热通风口,在过去十年中受到了越来越多的关注,以保护生物多样性和生态系统功能。对于这些空间离散的栖息地,帕拉克顿的幼虫分散,沉降到海底,招聘是连接底栖动物群群体的过程。对这些过程的知识对于了解发泄生态系统的恢复性来干扰或去除繁殖来源的抗弹性至关重要。特别是,水热通风口可能受人类活动的影响,包括科学研究,生态旅游,生物掩模和多种硫化物挖掘。 2009年,在美国EEZ中的一个通风口的第一个海洋保护区(MPA)是Marianas Stuch Marine国家纪念碑(MTMNM)的一部分。该地区的通风口沿着Mariana后弧扩展中心(BASC)和火山电弧。 2010年,我们开展了第一个致力于在南马里亚纳巴斯克南部的文本血小野的研究。 R / V Yokosuka上的巡航YK10-11是该地区的几个地区之一,作为日本多学科计划TAIGA的一部分(包裹平流和全球亚海地板地板含水层的原位生物地球化学过程)。在轴上的轴(蜗牛,Yamanaka)和轴上(Archaean,Urashima,Pika)的通风口中收集了底栖无脊椎动物的幼虫和成年标本,〜3000米深度。我们的目标包括围产社区的特点,幼虫丰富和多样性的评估,局部幼虫分散(约10公里的阶段),幼虫游泳行为的船上可视化以及每个发泄部位和遗传偏差的群体的遗传多样性网站之间。巡航期间的运营包括含有浸没的Shinkai 6500和七个地下停泊部署的九个潜水。南马里亚纳巴斯的这些通风口似乎与北北部〜600公里的Betterstudied BASC通风口有类似的宏观社区组成。底栖收集包括胃肠杆菌(例如,alviniconcha hessleri,Phymorhynchus Aff。Starmeri,Shinkailepas Aff。kaikatensis),酒鹰群(Neofroca Brachylepadoformis),虾(Chorocaris Aff。Vandoverae)和Polychaetes(例如,Paralvinella Hessleri);幼虫也用脱脂器收集近底。为了进一步评估幼虫丰度和多样性,我们部署了大量的浮游车泵,在三个通风口附近,过滤五个样本〜40000 L的样品,超过63μm滤网。幼虫在形态学上分类,并通过遗传段编码鉴定到文学术中的遗传段编码,并且可以鉴定到物种。本地规模的幼虫分散研究包括在巡航期间在轴上靠近底部流动的电流表。对于幼虫行为研究,在水平和垂直定向的腔室中可视化多个物种的单个多晶硅,颗粒和胃肠杆菌,以测量1个ATM的游泳速度。通过主要是底栖标本的分子遗传分析来确定局部规模的群体连接。人口遗传学研究可以延长到区域规模,当与在MTMNM的其他地方收集的样品的样本相关联时,包括沿马里亚纳弧的相对附近的那些沿着北方的北方地区的弧度。在MTMNM的生态系统管理和保护的背景下,我们将考虑我们对这些深海通风口的幼虫分散和人口连接的研究结果。我们的工作也将在深海,基于深度化学的生态系统的连接方面进行更广泛的背景,通过参与国际网络对人口连通性的深海生态系统(Indeep)工作组的科学调查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号