首页> 外文会议>World Congress on Particle Technology >Numerical study of a bi-disperse gas-solid fluidized bed using an Eulerian and Lagrangian hybrid model
【24h】

Numerical study of a bi-disperse gas-solid fluidized bed using an Eulerian and Lagrangian hybrid model

机译:欧拉和拉格朗日杂交模型使用欧拉和拉格朗日杂交模型的双分散气固流化床的数值研究

获取原文

摘要

In this paper, we present a hybrid model for the numerical assessment of poly-disperse gas-solid fluidized beds. The main idea of such a modeling strategy is to use a combination of a Lagrangian discrete phase model (DPM) and a kinetic theory based TFM to take advantage of the benefits of those two different formulations. On the one hand, the local distribution of the different particle diameters, which is required for the gas-solid drag force, can be obtained by tracking statistically representative particle trajectories for each particle diameter class. On the other hand, the contribution from the inter-particle stresses, i.e. inter-particle collisions, can be deduced from the TFM solution. These then appear as additional body force in the force balance of the DPM. Note that in a first step we solely consider diameter averaged solids stresses since the drag force is at least on order of magnitude higher than the solids stresses in fluidized beds. Finally, the numerical model is applied to a fluidized bed of a bi-disperse mixture of glass particles (0.5 mm and 2.5 mm particles) and with a cross-section of 0.15 m x 0.02 m. The results are then analyzed with respect to experimental data of Puttinger et al [1]. This comparison demonstrates that the computed bed hydrodynamics is in fairly good agreement with the experiment. However, the results also suggest that sub-grid drag corrections [2-4] for poly-disperse fluidized beds are required to make the numerical investigation of industrial scale fluidized bed units accessible.
机译:本文介绍了一种用于多分散气体固体流化床的数值评估的混合模型。这种建模策略的主要思想是使用拉格朗日离散相模型(DPM)和基于动力学理论的组合,以利用这两种不同配方的益处。一方面,通过跟踪每个粒径等级的统计代表性的粒子轨迹,可以获得用于气体固体阻力所需的不同粒径的局部分布。另一方面,可以从TFM溶液中推导出来自颗粒间应力的贡献,即颗粒碰撞。然后这些在DPM的力平衡中显示为额外的身体力。注意,在第一步中,我们仅考虑直径平均固体应力,因为拖曳力至少在比流化床中的固体应力高的数量级。最后,将数值模型应用于玻璃颗粒(0.5mm和2.5mm颗粒)的双分散混合物的流化床,横截面为0.15m×0.02μm。然后对Puttinger等[1]的实验数据分析结果。这种比较表明,计算床流体动力学与实验相当愉快。然而,结果还表明,需要对多分散流化床进行分散流化床的子网格缩进[2-4]来实现工业规模流化床单位的数值调查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号