首页> 外文会议>ASME International Conference on Ocean, Offshore and Arctic Engineering >EFFECT OF BUOYANCY AND INERTIA ON VISCOPLASTIC FLUID-FLUID DISPLACEMENT IN AN INCLINED ECCENTRIC ANNULUS WITH AN IRREGULAR SECTION
【24h】

EFFECT OF BUOYANCY AND INERTIA ON VISCOPLASTIC FLUID-FLUID DISPLACEMENT IN AN INCLINED ECCENTRIC ANNULUS WITH AN IRREGULAR SECTION

机译:浮力和惯性对具有不规则截面倾斜偏心环空粘液流体流体置换的影响

获取原文

摘要

Primary cementing is an important well construction process that should establish well control barriers and zonal isolation. Critical for primary cementing is the successful displacement of drilling fluid from the annulus between casing and formation by a sequence of spacer fluids and cement slurry. Failure to displace the drilling fluid may compromise the annular cement integrity and result in contaminated cement with degraded mechanical properties. Issues such as eccentricity, washouts and other geometric irregularities in the wellbore can complicate the displacement processes, and their effect on the quality of the cementing job and the final result is linked to uncertainty. We present numerical simulations of the displacement process between two viscoplastic fluids in the vicinity of a symmetric local hole enlargement. The study is limited to laminar flow regimes in the regular part of the annulus, and we focus on a near-horizontal section with significant eccentricity and small annular clearance. We vary the volumetric flow rate and the mass density difference between the fluids, and study how the irregularity affects the displacement efficiency and the presence of residual fluid in and after the irregularity. In the regular part of the geometry, eccentricity favors flow in the wider, upper part of the annulus, while density difference leads to azimuthal flow from the top to the low side of the annulus. The results support the assumption that increasing the mass density difference improves the displacement efficiency. In the laminar regime, lower flow rates can be favorable over higher ones in terms of efficiency measured as a function of volume that is pumped into the enlarged section. Displacement of drilling fluids for primary cementing is a rich flow problem involving different non-Newtonian fluids and possibly irregular geometry. Simulations of the displacement process can aid in optimizing fluid properties and injection rates for primary cementing operations, and assist cement log interpretation after the operation.
机译:主要粘合是一种重要的井建设过程,应该建立良好的控制障碍和区间隔离。对初级粘合至关重要是通过一系列间隔液和水泥浆料的套管和形成的钻井流体的成功位移。未能置换钻井液可能会损害环形水泥完整性并导致污染的水泥具有降低的机械性能。诸如井筒中的偏心,冲洗和其他几何不规则性等问题可以使位移过程复杂化,它们对胶结作业质量的影响以及最终结果与不确定性相关联。我们在对称局部空穴扩大附近的两个粘胶液之间的位移过程的数值模拟。该研究仅限于环形常规部分中的层流变制度,我们专注于具有显着偏心和小环形间隙的近水平部分。我们改变了流体之间的体积流速和质量密度差异,并研究了不规则性如何影响位移效率和在不规则性中和之后的残留流体的存在。在几何形状的常规部分中,偏心率利用在环的较宽上流动,而密度差导致从环的顶部到下端的方位角流动。结果支持提高质量密度差的假设提高了位移效率。在层状方案中,根据作为泵入放大部分的体积函数测量的效率方面,较低的流速可以在更高的效率方面有利。用于初级粘合的钻井液的位移是一种丰富的流量问题,包括不同的非牛顿流体和可能不规则的几何形状。位移过程的仿真可以帮助优化原芯片操作的流体性质和注射速率,并在操作之后辅助水泥对数解释​​。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号