首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >SELF-EXCITED HIGH-FREQUENCY TRANSVERSE LIMIT-CYCLE OSCILLATIONS AND ASSOCIATED FLAME DYNAMICS IN A GAS TURBINE REHEAT COMBUSTOR EXPERIMENT
【24h】

SELF-EXCITED HIGH-FREQUENCY TRANSVERSE LIMIT-CYCLE OSCILLATIONS AND ASSOCIATED FLAME DYNAMICS IN A GAS TURBINE REHEAT COMBUSTOR EXPERIMENT

机译:燃气轮机再热燃烧室实验中自激高频横向极限周期振荡及相关火焰动态

获取原文

摘要

This paper presents the investigation of high-frequency ther-moacoustic limit-cycle oscillations in a novel experimental gas turbine reheat combustor featuring both auto-ignition and propagation stabilised flame zones at atmospheric pressure. Dynamic pressure measurements at the faceplate of the reheat combustion chamber reveal high-amplitude periodic pressure pulsations at 3 kHz in the transverse direction of the rectangular cross-section combustion chamber. Further analysis of the acoustic signal shows that this is a thermoacoustically unstable condition undergoing limit-cycle oscillations. A sensitivity study is presented which indicates that these high-amplitude limit-cycle oscillations only occur under certain conditions: namely high power settings with propane addition to increase auto-ignition propensity. The spatially-resolved flame dynamics are then investigated using CH* chemiluminescence, phase-locked to the dynamic pressure, captured from all lateral sides of the reheat combustion chamber. This reveals strong heat release oscillations close to the chamber walls at the instability frequency, as well as axial movement of the flame tips in these regions and an overall transverse displacement of the flame. Both the heat release oscillations and the flame motion occur in phase with the acoustic mode. From these observations, likely thermoacoustic driving mechanisms which lead to the limit-cycle oscillations are inferred. In this case, the overall flame-acoustics interaction is assumed to be a superposition of several effects, with the observations suggesting strong influences from autoignition-pressure coupling as well as flame displacement and deformation due to the acoustic velocity field. These findings provide a foundation for the overall objective of developing predictive approaches to mitigate the impact of high-frequency thermoacoustic instabilities in future generations of gas turbines with sequential combustion systems.
机译:本文介绍了一种新型实验燃气涡轮机再热燃烧器中高频Ther-Mocoustic限位循环振荡的研究,其具有在大气压下的自动点火和传播稳定的火焰区。再热燃烧室面板处的动态压力测量在矩形横截面燃烧室的横向方向上显示出3kHz的高幅度周期性脉动。进一步分析声学信号表明,这是经历极限循环振荡的热声学不稳定状态。提出了一种灵敏度研究,表明这些高幅度限制周期振荡仅在某些条件下发生:即具有丙烷的高功率设置,以增加自动点火倾向。然后使用CH *化学发光来研究空间分辨的火焰动态,将从再热燃烧室的所有侧面捕获的动态压力锁定到动态压力。这揭示了在不稳定频率的腔室壁上靠近腔室壁的强的热释放振荡,以及在这些区域中的火焰尖端的轴向运动和火焰的整体横向位移。热释放振荡和火焰运动都与声模式相位发生。从这些观察结果来看,可能推断出导致极限循环振荡的热声驱动机构。在这种情况下,假设总体火焰声学相互作用是几种效果的叠加,观察结果表明来自自燃 - 压力耦合以及由于声速场引起的火焰位移和变形的强烈影响。这些调查结果为开发预测方法的整体目的提供了一种基础,以减轻具有顺序燃烧系统的后代燃气轮机在后代的高频热声型稳定性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号