首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >The Influence of Turbulence and Reynolds number on Slot Film Cooling Over the Downstream Pressure Surface
【24h】

The Influence of Turbulence and Reynolds number on Slot Film Cooling Over the Downstream Pressure Surface

机译:湍流和雷诺数对下游压力表面槽膜冷却的影响

获取原文

摘要

Pressure surface film cooling from discrete holes can often be challenging due to higher than optimum coolant to surface pressure ratios, effects of high levels of flow field turbulence, and the potential for clogging. Double wall cooling methods can be designed to collect spent cooling air and distribute the film cooling downstream through a slot. Incremental impingement is a new internal cooling method designed for cooling the leading edge region and pressure surface. Internally, incremental impingement includes high solidity pedestals to conduct heat and transmit thermal stresses due to temperature variations between cold and hot side surfaces. Subsequently, the flow is collected downstream from the last row of pedestals and discharged through a slot. Experimental and computational research from mesh slots, which have dense arrays of pedestals upstream from the discharge, and slots downstream from high solidity pedestal arrays have shown that turbulence and vorticity generated inside a film cooling plenum can have a significant impact on downstream film cooling. This impact of plenum flow disturbances is in addition to the film cooling dissipation caused by external flow field turbulence. Incremental impingement, in addition to high solidity pedestals, has impingement jets integrated behind the last row of pedestals which may cause further disruption to the film discharge and flow field interaction. The present measurements document the film cooling effectiveness distributions downstream from a slot located at 62% arc along the pressure surface of a vane. The plenum has been designed to include high solidity pedestals and impingement jets consistent with an incremental impingement geometry. Blowing ratios of 0.4, 0.7 and 1.0 have been investigated at vane exit chord Reynolds numbers of 500,000, 1,000,000 and 2,000,000 at density ratios a little over 1. These conditions have been run at 5 independent turbulence levels ranging from 0.7% to over 17%. The results provide a consistent picture of pressure surface slot film cooling downstream from incremental impingement.
机译:由于离散孔的压力表面膜,由于高于最佳冷却剂到表面压力比,高水平的流场湍流的效果以及堵塞的可能性。双壁冷却方法可以设计成收集花费冷却空气,并将薄膜冷却通过槽分布。增量冲击是一种用于冷却前缘区域和压力表面的新型内部冷却方法。在内部,增量冲击包括高稳定性基座,由于冷热和热侧表面之间的温度变化而导致热量并传递热应力。随后,从最后一排基座下游收集流动并排出槽。来自网状槽的实验和计算研究,其具有从放电上游的致密基座阵列,以及高固型基座阵列下游的槽已经表明,在薄膜冷却增压室内产生的湍流和涡度可对下游薄膜冷却产生显着的影响。由于外部流动场湍流引起的薄膜冷却耗散之外,压力流动扰动的这种影响是除了外流场湍流引起的外部。除了高稳定性基座之外,增量冲击具有集成在最后一排基座后面的冲击喷射,这可能导致薄膜放电和流场相互作用进一步破坏。本测量记录了位于沿着叶片的压力表面的62%弧形的槽下游下游的膜冷却效果分布。该压力罩设计用于包括高固型基座和与增量冲击几何形状一致的冲击喷射。在叶片出口雷诺数为500,000,1,000,000和2,000,000的叶片出口雷诺数0.4,0.7和1.0的吹气比一点超过1.这些条件在5个独立的湍流水平下运行,范围为0.7%至超过17%。结果提供了从增量冲击下游的压力表面槽膜冷却的一致图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号