首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >NUMERICAL INVESTIGATION ON SAND PARTICLES DEPOSITION IN A U-BEND RIBBED INTERNAL COOLING PASSAGE OF TURBINE BLADE
【24h】

NUMERICAL INVESTIGATION ON SAND PARTICLES DEPOSITION IN A U-BEND RIBBED INTERNAL COOLING PASSAGE OF TURBINE BLADE

机译:汽轮机叶片U形弯肋内部冷却通道中砂粒沉积的数值研究

获取原文

摘要

Sand particles impinge the internal cooling passage of the turbine blade and easily deposit, which lead to the decrease of cooling efficiency of the turbine blade and the increase of turbine blade temperature. In order to explore sand particles deposition mechanism in the internal cooling passage of turbine blades, the numerical simulation was performed in a U-bend passage with rib turbulators by means of a commercial CFD code. The fluid phase was modelled employing Reynolds-averaged Navier-Stokes approach. The discrete phase was solved using Lagrangian particle tracking method and a continuous random walk model. A particle deposition model was implemented using user-defined functions. The Reynolds numbers of 30000, 23000 and 15500 are considered. Particles sizes in the range 1-20 microns are considered. Results show that the particles deposition flux decreases gradually along the flow direction. The particles significantly deposit on the rib wall and the bend wall, especially on the windward rib wall and the upstream wall of the bend, with less deposition on the leeward rib wall. This is because the rib wall hinders the movement of fluid and sand particles impact the wall due to inertia, which lead to the energy loss. The particles deposition flux on the windward rib wall increases with the increase of Reynolds number and particles diameter, while the deposition flux on the leeward rib wall decreases. With the increase of the particles diameter, the particles deposition flux increases. The deposition rate increases with the increase of Reynolds number and particles diameter.
机译:砂粒撞击涡轮机叶片的内部冷却通道,易于沉积,这导致涡轮机叶片的冷却效率降低和涡轮叶片温度的增加。为了探索涡轮机叶片的内部冷却通道中的砂粒沉积机构,通过商业CFD码,在用肋湍流器的U形弯曲通道中进行数值模拟。采用Reynolds平均的Navier-Stokes方法模拟流体相位。使用拉格朗日粒子跟踪方法和连续随机步道模型来解决离散阶段。使用用户定义的函数实现粒子沉积模型。雷诺数30000,23000和15500被认为是。考虑了1-20微米范围内的颗粒尺寸。结果表明,颗粒沉积磁通沿流动方向逐渐降低。颗粒显着沉积在肋骨壁和弯曲壁上,特别是在挡风方向上的弯曲壁上和弯曲的上游壁上,在Leeward肋墙上沉积较小。这是因为肋骨阻碍了流体和砂颗粒的运动会影响由于惯性引起的墙壁,这导致能量损失。随着雷诺数和颗粒直径的增加,沿着卷绕肋壁上的颗粒沉积通量增加,而背风肋壁上的沉积通量减小。随着颗粒直径的增加,颗粒沉积通量增加。随着雷诺数和颗粒直径的增加,沉积速率增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号