首页> 外文会议>MEMS, MOEMS, and Micromachining II >Engineering and Characterization of Ferroelectric Microstructures for Photonic Crystal Applications
【24h】

Engineering and Characterization of Ferroelectric Microstructures for Photonic Crystal Applications

机译:用于光子晶体应用的铁电微结构的工程与表征

获取原文
获取原文并翻译 | 示例

摘要

We report on the fabrication and characterization of periodic nanoscale one- and two-dimensional surface structures in congruent 500 μm thick lithium niobate crystal samples. Structures with periods from 2 μm down to around 500 nm, lateral feature sizes down to 200 nm and depths compatible with conventional waveguide fabrication, have been obtained. Such structures are fabricated by applying polarity selective etching to periodically domain reversed samples obtained by electric field poling performed by overpoling regime. Holographic lithography is used to obtain sub-micron periodic insulating gratings to be used for selective ferroelectric domain reversal. The short pitch structures are attractive in a wide range of applications ranging from nonlinear optics, for short-wavelength conversion processes or backward second-harmonic generation, to the field of photonic crystals to fabricate novel tunable photonic crystal devices or electro-optically modulated Bragg gratings. Moreover moire beating effect is used in the photolithographic process to fabricate even more complex structures which could find applications in complicated photonic bandgap devices involving for example micro-ring resonators. In order to investigate the possibility to utilize these structures for photonic crystal applications, accurate topography characterization has been performed by using different techniques. Atomic force microscope provides high-resolution information about the lateral and depth feature size of the structures, while interferometric techniques, based on digital holography, have been used for wide field information about the homogeneity and periodicity of the structures.
机译:我们报告了全纳米500μm厚铌酸锂晶体样品中周期性纳米级一维和二维表面结构的制造和表征。已经获得了周期从2μm到大约500 nm,横向特征尺寸到200 nm和与传统波导制造兼容的深度的结构。这种结构是通过将极性选择性蚀刻应用于通过超极化机制执行的电场极化而获得的周期性畴反转样本而制成的。全息光刻用于获得亚微米周期性绝缘光栅,以用于选择性铁电畴反转。短节距结构在从短波长转换过程或向后二次谐波产生的非线性光学器件到光子晶体领域以制造新型可调谐光子晶体器件或电光调制布拉格光栅的广泛应用中具有吸引力。此外,在光刻工艺中使用莫尔拍打效应来制造甚至更复杂的结构,其可以在涉及例如微环谐振器的复杂的光子带隙器件中找到应用。为了研究将这些结构用于光子晶体应用的可能性,已经通过使用不同的技术进行了准确的形貌表征。原子力显微镜可提供有关结构的横向和深度特征尺寸的高分辨率信息,而基于数字全息技术的干涉技术已用于获得有关结构的均匀性和周期性的广域信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号