【24h】

Stochastic time of flight flow rate measurement for microfluidic applications

机译:用于微流体应用的随机飞行时间流量测量

获取原文
获取原文并翻译 | 示例

摘要

We describe a thermal time of flight liquid flow rate measurement based on injection of a pseudo-random sequence of thermal tracers in a microfluidic flow stream, followed by downstream detection of the temperature variation. The cross correlation function between the injected sequence and the detected signal displays a peak corresponding to the time of flight, which in turn provides a sensitive measure of flow rate. We demonstrate the technique by using integrated MEMS silicon structures suspended across a microfluidic channel for both heating and detection. The encapsulation technique we use involves 3-layer glass-silicon-glass bonding. We are capable of measuring flow rate over more than three decades with an accuracy of a few percent (the exact measurement range scales with geometry, in our case corresponding to 5 - 10,000 μl/min). Our technique shows excellent agreement between measurement, theory and numerical simulation results; by comparison with other existing methods for microfluidic flow metering (anemometric, coriolis), ours has the advantage of being largely independent of physical fluid properties. In addition, the suspended MEMS heaters we fabricate can also be used as regular anemometer probes, extending the measurement possibilities to gas flow metering and phase detection.
机译:我们描述了一种热飞行时间液体流量的测量,该测量基于微流体流中热示踪剂的伪随机序列的注入,随后是温度变化的下游检测。注入序列和检测到的信号之间的互相关函数显示一个与飞行时间相对应的峰值,从而提供了一种灵敏的流量度量。我们通过使用悬浮在微流体通道上的集成MEMS硅结构进行加热和检测来演示该技术。我们使用的封装技术涉及三层玻璃-硅-玻璃键合。我们能够以超过百分之三十的精度测量超过三十年的流速(精确的测量范围随几何尺寸而变化,在我们的情况下相当于5-10,000μl/ min)。我们的技术在测量,理论和数值模拟结果之间显示出极好的一致性;通过与其他现有的微流体流量计量方法(电流测量,科里奥利)进行比较,我们的方法具有很大程度上不受物理流体特性影响的优势。此外,我们制造的悬挂式MEMS加热器也可用作常规的风速计探头,从而将测量的可能性扩展到了气体流量计量和相位检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号